Consider a rational representation of an algebraic torus on a vector space . Suppose that is a homogeneous minimal generating set for the ring of invariants, . New upper bounds are derived for the number . These bounds are expressed in terms of the volume of the convex hull of the weights of and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators consisting of monomials and such that is integral over .
Considérons une représentation rationnelle d’un tore algébrique sur un espace vectoriel . Soit un ensemble générateur homogène minimal pour l’anneau des invariants . De nouvelles bornes supérieures sont établies pour le nombre . Ces bornes sont exprimées en termes du volume de l’enveloppe convexe des poids de et d’autres données géométriques. De plus on décrit un algorithme pour construire un ensemble partiel (essentiellement unique) dont les éléments sont des monômes et tel que soit intègre sur .
@article{AIF_1993__43_4_1055_0, author = {Wehlau, David}, title = {Constructive invariant theory for tori}, journal = {Annales de l'Institut Fourier}, pages = {1055--1066}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {4}, year = {1993}, doi = {10.5802/aif.1364}, mrnumber = {95c:14068}, zbl = {0789.14009}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1364/} }
TY - JOUR AU - Wehlau, David TI - Constructive invariant theory for tori JO - Annales de l'Institut Fourier PY - 1993 SP - 1055 EP - 1066 VL - 43 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1364/ DO - 10.5802/aif.1364 LA - en ID - AIF_1993__43_4_1055_0 ER -
Wehlau, David. Constructive invariant theory for tori. Annales de l'Institut Fourier, Volume 43 (1993) no. 4, pp. 1055-1066. doi : 10.5802/aif.1364. http://archive.numdam.org/articles/10.5802/aif.1364/
[B] An Introduction to Convex Polytopes, Springer-Verlag, Berlin-Heidelberg-New York, 1983. | MR | Zbl
,[EW] On the ampleness of invertible sheaves in complete projective toric varieties, Results in Math., (1991), 275-278. | MR | Zbl
, ,[Ga] The Theory of Matrices, Vol. 1, Chelsea Publishing Company, New York, 1959. | Zbl
,[Go] Invariantentheorie, Chelsea Publishing Company, New York, 1987.
,[K] Computing Invariants, S. S. Koh (Ed.) Invariant Theory, Lect. Notes Math., 1278, 81-94, Springer-Verlag, Berlin-Heidelberg-New York, 1987. | MR | Zbl
,[N1] Der endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77 (1916), 89-92. | JFM
,[N2] Der endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p., Nachr. v. d. Ges. Wiss. zu Göttingen, (1926), 485-491. | JFM
,[O] Convex Bodies and Algebraic Geometry, Ergeb. Math. und Grenzgeb., Bd. 15, Springer-Verlag, Berlin-Heidelberg-New York, 1988. | Zbl
,[P] Constructive Invariant Theory, Astérisque, 87/88 (1981), 303-334. | Numdam | MR | Zbl
,[R] Maximal Determinants in Combinatorial Investigations, Can. Jour. Math., 8 (1956), 245-249. | MR | Zbl
,[S] Finite Groups and Invariant Theory, M.-P. Malliavin (Ed.) Topics in Invariant Theory (Lect. Notes Math. 1478), 35-66, Springer-Verlag, Berlin-Heidelberg-New York, 1991. | MR | Zbl
,[St] Combinatorics and Commutative Algebra, Progress in Mathematics, 41, Birkhäuser, Boston-Basel-Stuttgart, 1983. | MR | Zbl
,[W] The Popov Conjecture for Tori, Proc. Amer. Math. Soc., 114 (1992), 839-845. | MR | Zbl
,Cited by Sources: