Let be an open set in and be a subset of . We characterize those pairs which permit the extension of superharmonic functions from to , or the approximation of functions on by harmonic functions on .
Soient un ouvert de et une partie de . Nous caractérisons les paires qui nous permettent d’étendre les fonctions surharmoniques de à , ou d’approcher les fonctions sur par les fonctions harmoniques sur .
@article{AIF_1994__44_1_65_0, author = {Gardiner, Stephen J.}, title = {Superharmonic extension and harmonic approximation}, journal = {Annales de l'Institut Fourier}, pages = {65--91}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {44}, number = {1}, year = {1994}, doi = {10.5802/aif.1389}, mrnumber = {95a:31006}, zbl = {0795.31004}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1389/} }
TY - JOUR AU - Gardiner, Stephen J. TI - Superharmonic extension and harmonic approximation JO - Annales de l'Institut Fourier PY - 1994 SP - 65 EP - 91 VL - 44 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1389/ DO - 10.5802/aif.1389 LA - en ID - AIF_1994__44_1_65_0 ER -
Gardiner, Stephen J. Superharmonic extension and harmonic approximation. Annales de l'Institut Fourier, Volume 44 (1994) no. 1, pp. 65-91. doi : 10.5802/aif.1389. http://archive.numdam.org/articles/10.5802/aif.1389/
[1] Uniform and tangential approximations by analytic functions, Izv. Akad. Nauk Armjan. SSR, Ser. Mat., 3 (1968), 273-286 (Russian); Amer. Math. Soc. Transl., (2) 122 (1984), 85-97. | MR | Zbl
,[2] On the extension of superharmonic functions, J. London Math. Soc., (2) 4 (1971), 215-230. | MR | Zbl
,[3] Tangential harmonic approximation on relatively closed sets, Proc. London Math. Soc. (3) 68 (1994), 112-126. | MR | Zbl
and ,[4] Uniform harmonic approximation on Riemannian manifolds, J. Analyse Math., to appear. | Zbl
and ,[5] Uniform approximation by global harmonic functions, in Approximation by Solutions of Partial Differential Equations, ed. B. Fuglede et al., NATO ASI Series, Kluwer, Dordrecht, 1992, pp. 15-26. | MR | Zbl
and ,[6] Research problems in complex analysis, in Aspects of Contemporary Complex Analysis, ed. D.A. Brannan and J.G. Clunie, Academic Press, New York, 1980, pp. 527-572. | MR | Zbl
, and ,[7] Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier, Grenoble, 1 (1949), 103-113. | Numdam
,[8] Semimartingales and subharmonic functions, Trans. Amer. Math. Soc., 77 (1954), 86-121. | MR | Zbl
,[9] Classical potential theory and its probabilistic counterpart, Springer, New York, 1983.
,[10] Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc., 261 (1980), 169-183. | MR | Zbl
, and ,[11] Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc., (2) 28 (1983), 71-82. | MR | Zbl
, and ,[12] A characterization of harmonic Arakelyan sets, Proc. Amer. Math. Soc., 119 (1993), 811-816. | MR | Zbl
and ,[13] Introduction to potential theory, Krieger, New York, 1975.
,[14] On the solvability and stability of the Dirichlet problem, Uspehi Mat. Nauk, 8 (1941), 171-231 (Russian); Amer. Math. Soc. Transl., 51 (1966), 1-73. | Zbl
,[15] De l'approximation harmonique uniforme, Doctoral thesis, Université de Montréal, 1982.
,[16] On a superharmonic extension, Rev. Roum. Math. Pures Appl., 26 (1981), 631-640. | MR | Zbl
,[17] On tangential harmonic approximation and some related problems, Complex Analysis I, Lecture Notes in Mathematics 1275, Springer, Berlin (1987), 280-286. | MR | Zbl
,Cited by Sources: