We establish a Carleman type inequality for the subelliptic operator in , , where , . As a consequence, we show that has the strong unique continuation property at points of the degeneracy manifold if the potential is locally in certain spaces.
Nous démontrons une inéqualité du type de Carleman pour l’opérateur sous-elliptique de la forme dans avec , , et . On en déduit que possède la propriété d’unicité stricte du prolongement des solutions aux points , , si le potentiel appartient localement à des espaces particuliers.
@article{AIF_1994__44_1_129_0, author = {Garofalo, Nicola and Shen, Zhongwei}, title = {Carleman estimates for a subelliptic operator and unique continuation}, journal = {Annales de l'Institut Fourier}, pages = {129--166}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {44}, number = {1}, year = {1994}, doi = {10.5802/aif.1392}, mrnumber = {94m:35037}, zbl = {0791.35017}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1392/} }
TY - JOUR AU - Garofalo, Nicola AU - Shen, Zhongwei TI - Carleman estimates for a subelliptic operator and unique continuation JO - Annales de l'Institut Fourier PY - 1994 SP - 129 EP - 166 VL - 44 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1392/ DO - 10.5802/aif.1392 LA - en ID - AIF_1994__44_1_129_0 ER -
%0 Journal Article %A Garofalo, Nicola %A Shen, Zhongwei %T Carleman estimates for a subelliptic operator and unique continuation %J Annales de l'Institut Fourier %D 1994 %P 129-166 %V 44 %N 1 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.1392/ %R 10.5802/aif.1392 %G en %F AIF_1994__44_1_129_0
Garofalo, Nicola; Shen, Zhongwei. Carleman estimates for a subelliptic operator and unique continuation. Annales de l'Institut Fourier, Volume 44 (1994) no. 1, pp. 129-166. doi : 10.5802/aif.1392. http://archive.numdam.org/articles/10.5802/aif.1392/
[ABV]Lp inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier, Grenoble, 31-3 (1981), 153-168. | Numdam | MR | Zbl
, and ,[B]Non-prolongement unique des solutions d'opérateurs, “Somme de carrés”, Ann. Inst. Fourier, Grenoble, 36-4 (1986), 137-155. | Numdam | MR | Zbl
,[C]Sur un problème d'unicité pour les systèmes d'èquations aux derivées partielles à deux variables indépendantes, Ark. Mat., 26B (1939), 1-9. | MR | Zbl
,[E]Higher transcendental functions, Bateman manuscript project, McGraw-Hill, New York, 1955. | MR | Zbl
(Director),[G]Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension, J. Diff. Eq., 104 (1) (1993), 117-146. | MR | Zbl
,[Gr]Spherical harmonics on the Heisenberg group, Canad. Math. Bull., 23(4) (1980), 383-396. | MR | Zbl
,[Gru1]On a class of hypoelliptic operators, Math. USSR Sbornik, 12(3) (1970), 458-476. | Zbl
,[Gru2]On a class of hypoelliptic pseudodifferential operators degenerate on a submanifold, Math. USSR Sbornik, 13(2) (1971), 155-186. | Zbl
,[H]Uniqueness theorems for second order elliptic differential equations, Comm. P. D. E., 8 (1983), 21-64. | MR | Zbl
,[J]Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. in Math., 63 (1986), 118-134. | MR | Zbl
,[JK]Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math., 121 (1985), 463-494. | MR | Zbl
and ,[K]Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation, Lecture Notes in Math., 1384 (1989) 69-90. | Zbl
,[RS]Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. | MR | Zbl
and ,[SS]Unique continuation for Schrödinger operators with unbounded potential, J. Math. Anal. Appl., 77 (1980), 482-492. | MR | Zbl
and ,[S]Oscillatory integrals and spherical harmonics, Duke Math. J., 53 (1986), 43-65. | MR | Zbl
,[SW]Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. | MR | Zbl
and ,[Sz] Orthogonal Polynomials, A. M. S. Colloq. Publ., 4th edition, 23, 1975.
,Cited by Sources: