It is proved that in every rational surface, non-isomorphic to the projective plane, there exists an holomorphic foliation which is rigid and has algebraic leaves, having only isolated singularities.
On démontre que dans toute surface rationnelle, non-isomorphe au plan projectif, il existe une feuilletage analytique rigide, possédant des feuilles algébriques et n’ayant que des singularités isolées.
@article{AIF_1994__44_1_271_0, author = {Mendes, Luis G. and Sebastiani, Marcos}, title = {Sur la densit\'e des syst\`emes de {Pfaff} sans solution alg\'ebrique}, journal = {Annales de l'Institut Fourier}, pages = {271--276}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {44}, number = {1}, year = {1994}, doi = {10.5802/aif.1397}, mrnumber = {95f:58008}, zbl = {0792.58001}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/aif.1397/} }
TY - JOUR AU - Mendes, Luis G. AU - Sebastiani, Marcos TI - Sur la densité des systèmes de Pfaff sans solution algébrique JO - Annales de l'Institut Fourier PY - 1994 SP - 271 EP - 276 VL - 44 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1397/ DO - 10.5802/aif.1397 LA - fr ID - AIF_1994__44_1_271_0 ER -
%0 Journal Article %A Mendes, Luis G. %A Sebastiani, Marcos %T Sur la densité des systèmes de Pfaff sans solution algébrique %J Annales de l'Institut Fourier %D 1994 %P 271-276 %V 44 %N 1 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.1397/ %R 10.5802/aif.1397 %G fr %F AIF_1994__44_1_271_0
Mendes, Luis G.; Sebastiani, Marcos. Sur la densité des systèmes de Pfaff sans solution algébrique. Annales de l'Institut Fourier, Volume 44 (1994) no. 1, pp. 271-276. doi : 10.5802/aif.1397. http://archive.numdam.org/articles/10.5802/aif.1397/
[LN]Construction of singular holomorphic vector fields and foliations in dimension two, J. Differential Geometry, 26 (1987), 1-31. | MR | Zbl
,[J]Equations de Pfaff algébriques, Lecture Notes in Math. Springer Verlag, vol. 708, 1979. | MR | Zbl
,[B]Surfaces Algébriques Complexes, Astérisque, vol. 54 (1978). | Numdam | MR | Zbl
,[C-S]Invariant varieties through singularities of holomorphic vector fields, Ann. of Math., 115 (1982), 579-595. | MR | Zbl
et ,Cited by Sources: