Hitting probabilities and potential theory for the brownian path-valued process
Annales de l'Institut Fourier, Volume 44 (1994) no. 1, pp. 277-306.

We consider the Brownian path-valued process studied in [LG1], [LG2], which is closely related to super Brownian motion. We obtain several potential-theoretic results related to this process. In particular, we give an explicit description of the capacitary distribution of certain subsets of the path space, such as the set of paths that hit a given closed set. These capacitary distributions are characterized as the laws of solutions of certain stochastic differential equations. They solve variational problems in the space of probability measures on the path space. We also investigate some special classes of polar sets for the path-values process. These results are closely related to the polarity questions for super Brownian motion recently investigated by Dynkin and others. They are also related to removable singularities for the nonlinear partial differential equation Δu=u 2 .

Nous considérons le “mouvement brownien à valeurs trajectoires” déjà étudié dans [LG1], et dans [LG2], qui est étroitement lié au super mouvement brownien. Nous obtenons plusieurs résultats de théorie du potentiel probabiliste relatifs à ce processus. En particulier, nous donnons une description explicite des mesures capacitaires de certains sous-ensembles de l’espace des trajectoires, tels que l’ensemble des trajectoires qui rencontrent un sous-ensemble fermé fixé de d . Ces mesures d’équilibre, qui sont les lois des solutions de certaines équations différentielles stochastiques, sont associées à des problèmes variationnels dans l’ensemble des mesures de probabilité sur l’espace des trajectoires. Nous nous intéressons aussi à des classes particulières d’ensembles polaires pour le mouvement brownien à valeurs trajectoires. Ces derniers résultats sont très liés aux questions de polarité pour le super mouvement brownien étudiées récemment par Dynkin et d’autres auteurs, ainsi qu’aux problèmes d’éliminabilité de singularités pour l’équation aux dérivées partielles non linéaire Δu=u 2 .

@article{AIF_1994__44_1_277_0,
     author = {Gall, Jean-Fran\c{c}ois Le},
     title = {Hitting probabilities and potential theory for the brownian path-valued process},
     journal = {Annales de l'Institut Fourier},
     pages = {277--306},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {44},
     number = {1},
     year = {1994},
     doi = {10.5802/aif.1398},
     mrnumber = {94m:60155},
     zbl = {0794.60077},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1398/}
}
TY  - JOUR
AU  - Gall, Jean-François Le
TI  - Hitting probabilities and potential theory for the brownian path-valued process
JO  - Annales de l'Institut Fourier
PY  - 1994
SP  - 277
EP  - 306
VL  - 44
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.1398/
DO  - 10.5802/aif.1398
LA  - en
ID  - AIF_1994__44_1_277_0
ER  - 
%0 Journal Article
%A Gall, Jean-François Le
%T Hitting probabilities and potential theory for the brownian path-valued process
%J Annales de l'Institut Fourier
%D 1994
%P 277-306
%V 44
%N 1
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.1398/
%R 10.5802/aif.1398
%G en
%F AIF_1994__44_1_277_0
Gall, Jean-François Le. Hitting probabilities and potential theory for the brownian path-valued process. Annales de l'Institut Fourier, Volume 44 (1994) no. 1, pp. 277-306. doi : 10.5802/aif.1398. http://archive.numdam.org/articles/10.5802/aif.1398/

[AL]R. Abraham, J.F. Le Gall, La mesure de sortie du super mouvement brownien, Probab. Th. Rel. Fields, to appear. | Zbl

[AP]D.R. Adams, J.C. Polking, The equivalence of two definitions of capacity, Proc. Amer. Math. Soc., 37 (1973), 529-534. | MR | Zbl

[BP]P. Baras, M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier, 34-1 (1984), 185-206 | Numdam | MR | Zbl

[DM]C. Dellacherie, P.A. Meyer, Probabilités et Potentiel, Chapitres I à IV, Hermann, 1975. | MR | Zbl

[Do]J.L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer, 1984. | MR | Zbl

[Dy1]E.B. Dynkin, Green's and Dirichlet spaces associated with fine Markov processes, J. Funct. Anal., 47 (1982), 381-418. | MR | Zbl

[Dy2]E.B. Dynkin, A probabilistic approach to one class of nonlinear differential equations, Probab. Th. Rel. Fields, 89 (1991), 89-115. | MR | Zbl

[Dy3]E.B. Dynkin, Superprocesses and parabolic nonlinear differential equations, Ann. Probab., 20 (1992), 942-962. | MR | Zbl

[FG]P.J. Fitzsimmons, R.K. Getoor, On the potential theory of symmetric Markov processes, Math. Ann., 281 (1988), 495-512. | MR | Zbl

[GV]A. Gmira, L. Véron, Boundary singularities of some nonlinear elliptic equations, Duke Math. J., 64 (1991), 271-324. | MR | Zbl

[HW]R.A. Hunt, R.L. Wheeden, Positive harmonic functions in Lipschitz domains, Trans. Amer. Math. Soc., 147 (1970), 507-527. | MR | Zbl

[LG1]J.F. Le Gall, A class of path-valued Markov processes and its applications to superprocesses, Probab. Th. Rel. Fields, 95 (1993), 25-46. | MR | Zbl

[LG2]J.F. Le Gall, A path-valued Markov process and its connections with partial differential equations, Proceedings of the First European Congress of Mathematics, to appear. | Zbl

[Me]N.G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292. | MR | Zbl

[Pe]E.A. Perkins, Polar sets and multiple points for super Brownian motion, Ann. Probab., 18 (1990), 453-491. | MR | Zbl

[Sh]Y.C. Sheu, A characterization of polar sets on the boundary, preprint (1993)

Cited by Sources: