We compute the loop space homology of the space of configurations of points in a compact simply connected manifold . We prove in particular that, if is not generated by one generator, then the rational homology of contains a tensor algebra for .
Nous calculons dans ce texte l’homologie de l’espace des lacets de l’espace des configurations ordonnées de points dans une variété compacte simplement connexe .
@article{AIF_1994__44_2_559_0, author = {F\'elix, Yves and Thomas, Jean-Claude}, title = {Homologie des espaces de lacets des espaces de configuration}, journal = {Annales de l'Institut Fourier}, pages = {559--568}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {2}, year = {1994}, doi = {10.5802/aif.1409}, mrnumber = {95i:55007}, zbl = {0806.57024}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/aif.1409/} }
TY - JOUR AU - Félix, Yves AU - Thomas, Jean-Claude TI - Homologie des espaces de lacets des espaces de configuration JO - Annales de l'Institut Fourier PY - 1994 SP - 559 EP - 568 VL - 44 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1409/ DO - 10.5802/aif.1409 LA - fr ID - AIF_1994__44_2_559_0 ER -
%0 Journal Article %A Félix, Yves %A Thomas, Jean-Claude %T Homologie des espaces de lacets des espaces de configuration %J Annales de l'Institut Fourier %D 1994 %P 559-568 %V 44 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1409/ %R 10.5802/aif.1409 %G fr %F AIF_1994__44_2_559_0
Félix, Yves; Thomas, Jean-Claude. Homologie des espaces de lacets des espaces de configuration. Annales de l'Institut Fourier, Volume 44 (1994) no. 2, pp. 559-568. doi : 10.5802/aif.1409. http://archive.numdam.org/articles/10.5802/aif.1409/
[1]On the homology of configuration spaces, Topology, 28 (1989), 111-123. | MR | Zbl
, and ,[2]Differential Hopf algebras, Trans. of the Amer. Math. Soc., 107 (1963), 153-176. | MR | Zbl
,[3]Homology and Morse Theory of Third Configuration Spaces, Indiana University Math. Journal, 30 (1981), 501-512. | MR | Zbl
and ,[4]The homology of Cn+1 spaces, n ≥ 0, in F.R. Cohen, T.J. Lada and J.P. May, The homology of iterated loop spaces, Springer-Verlag, Lecture Notes in Math., 533 (1976).
,[5]Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, in Geometric Applications of Homotopy Theory I, Proceedings Evanston 1977, Edited by Barratt and Mahowald, Lecture Notes in Mathematics 657, Springer-Verlag (1978), 106-143. | Zbl
and ,[6]Configuration spaces, Math. Scand., 10 (1962), 111-118. | MR | Zbl
and ,[7]Rational L.S. category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-32. | MR | Zbl
and ,[8]The Serre spectral sequence of a multiplicative fibration, preprint (1993). | Zbl
, and ,[9]Adam's cobar equivalence, Trans. Amer. Math. Soc., 329 (1992), 531-549. | MR | Zbl
, and ,[10]Mod p loop space homology, Invent. Math., 95 (1989), 247-262. | MR | Zbl
, and ,[11]Sur l'homologie de l'espace des lacets d'une variété compacte, Annales Ecole Norm. Sup., 25 (1992), 617-627. | Numdam | MR | Zbl
et ,[12]Module d'holonomie d'une fibration, Bull. Soc. Math. France, 113 (1985), 255-258. | Numdam | MR | Zbl
et ,[13]Effet d'un attachement cellulaire dans l'homologie de l'espace des lacets, Annales de l'Institut Fourier, 39-1 (1989), 207-224. | Numdam | MR | Zbl
et ,[14]Lectures on minimal models, Mémoire de la Soc. Math. France, 9/10 (1983). | Numdam | MR | Zbl
,[15]Suites inertes dans les algèbres de Lie graduées, Math. Scand., 61 (1987), 39-67. | MR | Zbl
et ,Cited by Sources: