We consider the monodromy group of the Pochhammer differential equation . Let be the reduce equation modulo a prime . Then we show that is finite if and only if has a full set of polynomial solutions for almost all primes .
Nous considérons le groupe de monodromie de l’équation différentielle de Pochhammer . Soit l’équation réduite modulo un nombre premier . Alors, on montre que est fini si et seulement si admet un système fondamental de solutions polynomiales pour presque tous les nombres premiers.
@article{AIF_1994__44_3_767_0, author = {Haraoka, Yoshishige}, title = {Finite monodromy of {Pochhammer} equation}, journal = {Annales de l'Institut Fourier}, pages = {767--810}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {3}, year = {1994}, doi = {10.5802/aif.1417}, mrnumber = {96c:33018}, zbl = {0812.33006}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1417/} }
TY - JOUR AU - Haraoka, Yoshishige TI - Finite monodromy of Pochhammer equation JO - Annales de l'Institut Fourier PY - 1994 SP - 767 EP - 810 VL - 44 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1417/ DO - 10.5802/aif.1417 LA - en ID - AIF_1994__44_3_767_0 ER -
%0 Journal Article %A Haraoka, Yoshishige %T Finite monodromy of Pochhammer equation %J Annales de l'Institut Fourier %D 1994 %P 767-810 %V 44 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1417/ %R 10.5802/aif.1417 %G en %F AIF_1994__44_3_767_0
Haraoka, Yoshishige. Finite monodromy of Pochhammer equation. Annales de l'Institut Fourier, Volume 44 (1994) no. 3, pp. 767-810. doi : 10.5802/aif.1417. http://archive.numdam.org/articles/10.5802/aif.1417/
[1] Monodromy for the hypergeometric function nFn-1, Invent. Math., 95 (1989), 325-354. | MR | Zbl
, ,[2] Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. Lecture Notes in Math. 1135, 52-100, Springer, 1985. | MR | Zbl
, ,[3] Number theoretic study of Pochhammer equation. Publ. Math. de l'Université de Paris VI, Problèmes diophantiens, 93 (1989/1990).
,[4] Canonical forms of differential equations free from accessory parameters. to appear in SIAM J. Math. Anal. | Zbl
,[5] Algebraic differential equations, INDAM Symposia Math., XXIV (1981), 169-204. | MR | Zbl
,[6] Ordinary differential equations, New York, 1926.
,[7] From Gauss to Painlevé : A modern theory of special functions, Vieweg, 1991. | Zbl
, , , ,[8] Nilpotent connections and the monodromy theorem : application of a result of Turrittin, Publ. Math. I.H.E.S., 39 (1970), 355-412. | Numdam | MR | Zbl
,[9] Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118. | MR | Zbl
,[10] Eine Angewendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127, 92-102 (1904) ; repreinted in Collected Works, vol. II, 98-108, Thales Verlag, Essen, 1987. | JFM
,[11] Reducibility condition of Pochhammer's equation. Master Thesis, Tokyo Univ., 1973 (in Japanese).
,[12] On the group of Fuchsian equations. Seminar Reports of Tokyo Metropolitan University, 1987.
,[13] On a monodromy group and irreducibility conditions of a fourth order Fuchsian differential system of Okubo type, J. Reine Angew. Math., 299/300 (1978), 38-50. | MR | Zbl
,[14] On a fourth order Fuchsian differential equation of Okubo type, Funk. Ekvac., 34 (1991), 211-221. | MR | Zbl
, ,[15] A global study of Jordan-Pochhammer differential equations. Funk. Ekvac., 19 (1976), 85-99. | MR | Zbl
, ,[16] Modern Analysis, Cambridge, 1927.
, ,[17] On the structure of connection coefficients for hypergeometric systems, Hiroshima Math. J., 18 (1988), 309-339. | MR | Zbl
,[18] On an irreducibility condition for hypergeometric systems, preprint. | Zbl
,Cited by Sources: