We will consider codimension one holomorphic foliations represented by sections , and having a compact Kupka component . We show that the Chern classes of the tangent bundle of behave like Chern classes of a complete intersection 0 and, as a corollary we prove that is a complete intersection in some cases.
On considère les feuilletages holomorphes singuliers de codimension 1 dans le projectif complexe de dimension qui admettent une composante de Kupka compacte . On montre que les classes de Chern du fibré tangent à se comportent comme les classes de Chern d’une intersection complète et, comme corollaire, on déduit que est une intersection complète dans certains cas.
@article{AIF_1994__44_4_1219_0, author = {Calvo-Andrade, Omegar and Soares, Marcio G.}, title = {Chern numbers of a {Kupka} component}, journal = {Annales de l'Institut Fourier}, pages = {1219--1236}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {4}, year = {1994}, doi = {10.5802/aif.1431}, mrnumber = {95m:32045}, zbl = {0811.32024}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1431/} }
TY - JOUR AU - Calvo-Andrade, Omegar AU - Soares, Marcio G. TI - Chern numbers of a Kupka component JO - Annales de l'Institut Fourier PY - 1994 SP - 1219 EP - 1236 VL - 44 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1431/ DO - 10.5802/aif.1431 LA - en ID - AIF_1994__44_4_1219_0 ER -
%0 Journal Article %A Calvo-Andrade, Omegar %A Soares, Marcio G. %T Chern numbers of a Kupka component %J Annales de l'Institut Fourier %D 1994 %P 1219-1236 %V 44 %N 4 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1431/ %R 10.5802/aif.1431 %G en %F AIF_1994__44_4_1219_0
Calvo-Andrade, Omegar; Soares, Marcio G. Chern numbers of a Kupka component. Annales de l'Institut Fourier, Volume 44 (1994) no. 4, pp. 1219-1236. doi : 10.5802/aif.1431. http://archive.numdam.org/articles/10.5802/aif.1431/
[B] Some properties of stable rank-2 vector bundles on Pn, Math. Ann., 226 (1977), 125-150. | MR | Zbl
,[BB] Singularities of holomorphic foliations, Journal on Differential Geometry, 7 (1972), 279-342. | MR | Zbl
, ,[BCh] On smooth subcanonical varieties of codimension 2 in Pn n ≥ 4, Annali di Matematica, (1983), 99-117. | MR | Zbl
, ,[CL] Codimension one holomorphic foliations with Kupka components.
, ,[GS] Komplexe Unterräume und holomorphe Vektorraumbündel von Rang zwei, Math. Ann., 230 (1977), 75-90. | MR | Zbl
, ,[GH] Principles of Algebraic Geometry, Pure & Applied Math., Wiley Intersc., New York, 1978. | Zbl
, ,[G] Topologie algébrique et théorie de faisceaux, Actualités Scientifiques et Industrielles, Herman, Paris, 1952.
,[GML] A structural stability of foliations with a meromorphic first integral, Topology, 30 (1990), 315-334. | Zbl
, ,[H] Varieties of small codimension in projective space, Bull. of the AMS, 80 (1974), 1017-1032. | MR | Zbl
,[H1] Stable vector bundles of rank 2 on P3, Math. Ann., 238 (1978), 229-280. | MR | Zbl
,[HS] A computer aided approach to codimension 2 subvarieties of Pn, n ≥ 6, J. Reine Angew. Math., 357 (1985), 205-220. | MR | Zbl
, ,[M] Structural stability of integrable differential forms, Geometry and Topology, LNM, Springer, New York, 1977, pp. 395-428. | MR | Zbl
,[OSS] Vector Bundles on Complex Projective spaces, Progress in Math., 3, Birkhauser, Basel, 1978.
, , ,[R] On projective varieties of codimension 2, Invent. Math., 73 (1983), 333-336. | MR | Zbl
,Cited by Sources: