The affine group of a local field acts on the tree (the Bruhat-Tits building of ) with a fixed point in the space of ends . More generally, we define the affine group of any homogeneous tree as the group of all automorphisms of with a common fixed point in , and establish main asymptotic properties of random products in : (1) law of large numbers and central limit theorem; (2) convergence to and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary with , which gives a description of the space of bounded -harmonic functions. Our methods strongly rely on geometric properties of homogeneous trees as discrete counterparts of rank one symmetric spaces.
Le groupe affine d’un corps local agit sur l’arbre (l’immeuble de Bruhat-Tits de ) en ayant un point fixe dans l’espace des bouts . Plus généralement, nous définissons le groupe affine d’un arbre homogène comme le groupe de tous les automorphismes de ayant un point fixe commun dans , et établissons les principales propriétés asymptotiques des produits aléatoires dans : (1) la loi des grands nombres et le théorème limite central; (2) la convergence vers et l’existence d’une solution au problème de Dirichlet à l’infini; (3) l’identification de la frontière de Poisson avec donnant une description de l’espace des fonctions -harmoniques bornées. Les méthodes utilisées sont étroitement reliées aux propriétés géométriques des arbres homogènes analogues à celles des espaces symétriques de rang un.
@article{AIF_1994__44_4_1243_0, author = {Cartwright, Donald I. and Kaimanovich, Vadim A. and Woess, Wolfgang}, title = {Random walks on the affine group of local fields and of homogeneous trees}, journal = {Annales de l'Institut Fourier}, pages = {1243--1288}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {4}, year = {1994}, doi = {10.5802/aif.1433}, mrnumber = {96f:60121}, zbl = {0809.60010}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1433/} }
TY - JOUR AU - Cartwright, Donald I. AU - Kaimanovich, Vadim A. AU - Woess, Wolfgang TI - Random walks on the affine group of local fields and of homogeneous trees JO - Annales de l'Institut Fourier PY - 1994 SP - 1243 EP - 1288 VL - 44 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1433/ DO - 10.5802/aif.1433 LA - en ID - AIF_1994__44_4_1243_0 ER -
%0 Journal Article %A Cartwright, Donald I. %A Kaimanovich, Vadim A. %A Woess, Wolfgang %T Random walks on the affine group of local fields and of homogeneous trees %J Annales de l'Institut Fourier %D 1994 %P 1243-1288 %V 44 %N 4 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1433/ %R 10.5802/aif.1433 %G en %F AIF_1994__44_4_1243_0
Cartwright, Donald I.; Kaimanovich, Vadim A.; Woess, Wolfgang. Random walks on the affine group of local fields and of homogeneous trees. Annales de l'Institut Fourier, Volume 44 (1994) no. 4, pp. 1243-1288. doi : 10.5802/aif.1433. http://archive.numdam.org/articles/10.5802/aif.1433/
[Az] Espaces de Poisson des Groupes Localement Compacts, Lect. Notes in Math., 148, Springer Berlin, 1970. | MR | Zbl
,[Be] The Geometry of Discrete Groups, Springer New York, 1983. | MR | Zbl
,[Bi] Convergence of Probability Measures, Wiley, New York, 1968. | MR | Zbl
,[CS] Convergence to ends for random walks on the automorphism group of a tree, Proc. Amer. Math. Soc., 107 (1989), 817-823. | MR | Zbl
and ,[Ca] Local Fields, Cambridge University Press, Cambridge, 1986. | MR | Zbl
,[Ch] Arbres, espaces ultramétriques, et bases de structure uniforme, Groupes d'Automorphismes d'Arbres, Thèse, Univ. Paris-Sud, 1993, p. 173-177.
,[De] Quelques applications du théorème ergodique sous-additif, Astérisque, 74 (1980), 183-201. | Numdam | MR | Zbl
,[E1] Étude du renouvellement sur le groupe affine de la droite réelle, Ann. Sci. Univ. Clermont, 65 (1977), 47-62. | Numdam | MR | Zbl
,[E2] Fonctions harmoniques positives sur le groupe affine, Probability Measures on Groups (H. Heyer, ed.), Lect. Notes in Math., 706, Springer, Berlin, 1978, 96-110. | MR | Zbl
,[E3] Comportement asymptotique du noyau potentiel sur les groupes de Lie, Annales Éc. Norm. Sup., 15 (1982), 257-364. | Numdam | MR | Zbl
,[Fe] An Introduction to Probability Theory and its Applications, Vol II, Wiley, New York, 1966. | MR | Zbl
,[Fi] An example in finite harmonic analysis with application to diffusion in compact ultrametric spaces, preprint, Univ. Roma "La Sapienza", 1992.
,[FN] Harmonic analysis and representation theory for groups acting on homogeneous trees, Cambridge Univ. Press, 1991.
and ,[Fu] Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, Vol. I (P. Ney, ed.), M. Dekker, New York, 1971, p. 1-63. | MR | Zbl
,[Ge] Harmonic functions on buildings of reductive split groups, Operator Algebras and Group Representations 1, Pitman, Boston, 1984, p. 208-221. | MR | Zbl
,[Gre] Stochastic groups, Ark. Mat., 4 (1961), 189-207. | MR | Zbl
,[G1] A central limit theorem for the group of linear transformations of the real axis, Soviet Math. Doklady, 15 (1974), 1512-1515. | Zbl
,[G2] Limit theorems for products of random linear transformations of a straight line (in Russian), Lithuanian Math. J., 15 (1975), 61-77. | MR | Zbl
,[Gro] Hyperbolic groups, Essays in Group Theory (S.M. Gersten, ed.), Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75-263. | MR | Zbl
,[Gui] Simplicité du spectre de Liapounoff d'un produit de matrices aléatoires sur un corps ultramétrique, C. R. Acad. Sc. Paris, 309 (1989), 885-888. | MR | Zbl
,[Gu] Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, Astérisque, 74 (1980), 47-98. | Numdam | MR | Zbl
,[GKR] Marches Aléatoires sur les Groupes de Lie, Lecture Notes in Math., 624, Springer Berlin-Heidelberg-New York, 1977. | MR | Zbl
, and ,[dH] Free groups in linear groups, L'Enseignement Math., 29 (1983), 129-144. | MR | Zbl
,[K1] An entropy criterion for maximality of the boundary of random walks on discrete groups, Soviet Math. Doklady, 31 (1985), 193-197. | MR | Zbl
,[K2] Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semi-simple Lie groups, J. Soviet Math., 47 (1989), 2387-2398. | MR | Zbl
,[K3] Poisson boundaries of random walks on discrete solvable groups, Probability Measures on Groups X (H. Heyer, ed.), Plenum Press, New York, 1991, p. 205-238. | MR | Zbl
,[K4] Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy, Harmonic Analysis and Discrete Potential Theory (M.A. Picardello, ed.), Plenum Press, New York, 1992, p. 145-180.
,[K5] Boundaries of random walks revisited, in preparation, Univ. Edinburgh.
,[Ki] The ergodic theory of subadditive processes, J. Royal Stat. Soc., Ser. B, 30 (1968), 499-510. | MR | Zbl
,[Ma] Discrete Subgroups of Semisimple Lie Groups (Erg. Math. Grenzgeb., 3. Folge, Band 17), Springer, New York, 1989.
,[Mo] Martin boundaries for invariant Markov processes on a solvable group, Theory of Probability and Appl., 12 (1967), 310-314. | Zbl
,[Ne] On the amenability and the Kunze-Stein property for groups acting on a tree, Pacific J. Math., 135 (1988), 371-380. | MR | Zbl
,[Rag] A proof of Oseledec's multiplicative ergodic theorem, Israel J. Math., 32 (1979), 356-362. | MR | Zbl
,[Rau] Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Mém. Bull. Soc. Math. France, 54 (1977), 5-118. | Numdam
,[Sch] Polynomidentitäten und Permutationsdarstellungen lokalkompakter Gruppen, Inventiones Math., 55 (1979), 97-106. | MR | Zbl
,[S1] Local Fields, Springer, New York, 1979.
,[S2] Trees, Springer, New York, 1980.
,[Sp] Principles of Random Walk, (2nd ed.), Springer, New York, 1976. | MR | Zbl
,[SW] Amenability, unimodularity, and the spectral radius of random walks on infinite graphs, Math. Zeitschr., 205 (1990), 471-486. | MR | Zbl
and ,[Ti] Sur le groupe des automorphismes d'un arbre, Essays in Topology and Related Topics (mémoires dédiés a G. de Rham), Springer, Berlin, 1970, p. 188-211. | MR | Zbl
,[Tr] Automorphism groups of graphs as topological groups, Math. Notes, 38 (1985), 717-720. | MR | Zbl
,[W1] Boundaries of random walks on graphs and groups with infinitely many ends, Israel J. Math., 68 (1989), 271-301. | MR | Zbl
,[W2] Random walks on infinite graphs and groups: a survey on selected topics, Bull. London Math. Soc., 26 (1994), 1-60. | MR | Zbl
,[W3] The Martin boundary of random walks on the automorphism group of a homogeneous tree, print Univ. Milano.
,Cited by Sources: