Pieri's formula for flag manifolds and Schubert polynomials
Annales de l'Institut Fourier, Volume 46 (1996) no. 1, pp. 89-110.

We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schubert polynomial by either an elementary or a complete symmetric polynomial. Thus, we generalize the classical Pieri’s formula for Schur polynomials (associated to Grassmann varieties) to Schubert polynomials (associated to flag manifolds). Our primary technique is an explicit geometric description of certain intersections of Schubert varieties. This method allows us to compute additional structure constants for the cohomology ring, some of which we express in terms of paths in the Bruhat order on thesymmetric group, which in turn yields an enumerative result about the Bruhat order.

Nous établissons la formule pour la multiplication par la classe d’une variété de Schubert spéciale dans l’anneau de cohomologie de la variété de drapeaux. Cette formule décrit aussi la multiplication d’un polynôme de Schubert soit par un polynôme symétrique élémentaire soit par un polynôme symétrique homogène. Ainsi nous généralisons la formule classique de Pieri sur les polynômes de Schur (associés aux grassmaniennes) au cas des polynômes de Schubert (associés aux variétés de drapeaux). Notre technique principale est une description géométrique explicite de certaines intersections des variétés de Schubert. Cette méthode nous permet de calculer des constantes de structure additionnelles pour l’anneau de cohomologie, et d’exprimer certaines de ces constantes en termes de chaînes dans l’ordre de Bruhat du groupe symétrique. Cette description induit à son tour un résultat sur l’ordre de Bruhat.

@article{AIF_1996__46_1_89_0,
     author = {Sottile, Frank},
     title = {Pieri's formula for flag manifolds and {Schubert} polynomials},
     journal = {Annales de l'Institut Fourier},
     pages = {89--110},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {46},
     number = {1},
     year = {1996},
     doi = {10.5802/aif.1508},
     mrnumber = {97g:14035},
     zbl = {0837.14041},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1508/}
}
TY  - JOUR
AU  - Sottile, Frank
TI  - Pieri's formula for flag manifolds and Schubert polynomials
JO  - Annales de l'Institut Fourier
PY  - 1996
SP  - 89
EP  - 110
VL  - 46
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1508/
DO  - 10.5802/aif.1508
LA  - en
ID  - AIF_1996__46_1_89_0
ER  - 
%0 Journal Article
%A Sottile, Frank
%T Pieri's formula for flag manifolds and Schubert polynomials
%J Annales de l'Institut Fourier
%D 1996
%P 89-110
%V 46
%N 1
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.1508/
%R 10.5802/aif.1508
%G en
%F AIF_1996__46_1_89_0
Sottile, Frank. Pieri's formula for flag manifolds and Schubert polynomials. Annales de l'Institut Fourier, Volume 46 (1996) no. 1, pp. 89-110. doi : 10.5802/aif.1508. http://archive.numdam.org/articles/10.5802/aif.1508/

[1] N. Bergeron, A combinatorial construction of the Schubert polynomials, J. Combin. Theory, Ser. A, 60 (1992), 168-182. | MR | Zbl

[2] N. Bergeron and S. Billey, RC-Graphs and Schubert polynomials, Experimental Math., 2 (1993), 257-269. | MR | Zbl

[3] I. N. Bernstein, I.M. Gelfand, and S. I. Gelfand, Schubert cells and cohomology of the spaces G/P, Russian Mathematical Surveys, 28 (1973), 1-26. | MR | Zbl

[4] S. Billey, W. Jockush, and R. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combinatorics, 2 (1993), 345-374. | MR | Zbl

[5] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts, Ann. Math., 57 (1953), 115-207. | MR | Zbl

[6] C. Chevalley, Sur les décompositions cellulaires des espaces G/B, in Algebraic Groups and their Generalizations : Classical Methods, American Mathematical Society, (1994), 1-23. Proceedings and Symposia in Pure Mathematics, vol. 56, Part 1. | MR | Zbl

[7] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sc. E.N.S. (4), 7 (1974), 53-88. | Numdam | MR | Zbl

[8] V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math., 79 (1985), 499-511. | MR | Zbl

[9] C. Ehresmann, Sur la topologie de certains espaces homogènes, Ann. Math., 35 (1934), 396-443. | JFM | Zbl

[10] S. Fomin and A. Kirillov, Yang-Baxter equation, symmetric functions and Schubert polynomials, Proc. FPSAC 5, Florence, 1993.

[11] S. Fomin and R. Stanley, Schubert polynomials and the nilCoxeter algebra, Adv. Math., 103 (1994), 196-207. | MR | Zbl

[12] W. Fulton, Intersection Theory, Ergebnisse der Math. 2, Springer-Verlag, 1984. | MR | Zbl

[13] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Joseph Wiley and Sons, 1978. | MR | Zbl

[14] H. Hiller, Combinatorics and intersections of Schubert varieties, Comment. Math. Helvetica, 57 (1982), 41-59. | MR | Zbl

[15] W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, vol. II, Cambridge University Press, 1952.

[16] S. Kleiman, The transversality of a general translate, Comp. Math., 28 (1974), 287-297. | Numdam | MR | Zbl

[17] A. Lascoux and M.-P. Schutzenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris, 294 (1982), 447-450. | MR | Zbl

[18] A. Lascoux and M.-P. Schutzenberger, Symmetry and flag manifolds, in Invariant Theory, (Montecatini, 1982), Springer-Verlag, 1983, 118-144. Lecture Notes in Mathematics 996. | MR | Zbl

[19] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, 1979. | MR | Zbl

[20] I. G. Macdonald, Notes on Schubert Polynomials, Laboratoire de combinatoire et d'informatique mathématique (LACIM), Université du Québec à Montréal, Montréal, 1991.

[21] D. Monk, The geometry of flag manifolds, Proc. London Math. Soc., 9 (1959), 253-286. | MR | Zbl

Cited by Sources: