We consider the following topological spaces: , , , , , et . Set . An map is a continuous self-map of having the branching point fixed. We denote by the set of periods of all periodic points of . The set is the full periodicity kernel of if it satisfies the following two conditions: (1) If is an map and , then . (2) If is a set such that for every map , implies , then . In this paper we compute the full periodicity kernel of and .
@article{AIF_1996__46_1_219_0, author = {Leseduarte, Carme and Llibre, Jaume}, title = {The full periodicity kernel of the trefoil}, journal = {Annales de l'Institut Fourier}, pages = {219--262}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {1}, year = {1996}, doi = {10.5802/aif.1512}, mrnumber = {1385516}, zbl = {0834.54024}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1512/} }
TY - JOUR AU - Leseduarte, Carme AU - Llibre, Jaume TI - The full periodicity kernel of the trefoil JO - Annales de l'Institut Fourier PY - 1996 SP - 219 EP - 262 VL - 46 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1512/ DO - 10.5802/aif.1512 LA - en ID - AIF_1996__46_1_219_0 ER -
%0 Journal Article %A Leseduarte, Carme %A Llibre, Jaume %T The full periodicity kernel of the trefoil %J Annales de l'Institut Fourier %D 1996 %P 219-262 %V 46 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1512/ %R 10.5802/aif.1512 %G en %F AIF_1996__46_1_219_0
Leseduarte, Carme; Llibre, Jaume. The full periodicity kernel of the trefoil. Annales de l'Institut Fourier, Volume 46 (1996) no. 1, pp. 219-262. doi : 10.5802/aif.1512. http://archive.numdam.org/articles/10.5802/aif.1512/
[ALM1] Periodic orbits of maps of Y, Trans. Amer. Math. Soc., 313 (1989), 475-538. | MR | Zbl
, and ,[ALM2] Combinatorial dynamics in dimension one, Advanced Series in Nonlinear Dynamics, Vol. 5, World Scientific, 1993. | MR | Zbl
, and ,[ALMT] Periods and entropy for Lorenz-like maps, Ann. Inst. Fourier, 39-4 (1989), 929-952. | Numdam | MR | Zbl
, , and ,[AM] Linear orderings and the full periodicity kernel for the n-star, J. Math. Anal. Appl., 180 (1993), 599-616. | MR | Zbl
and ,[Ba] An extension of Sharkovskii's Theorem to the n-od, Ergod. Th. & Dynam. Sys., 11 (1991), 249-271. | MR | Zbl
,[BL] Periods of maps on trees with all branching points fixed, Ergodic Th. & Dynam. Sys., 15 (1995), 239-246. | MR | Zbl
and ,[Bc1] Periodic orbits of continuous maps of the circle, Trans. Amer. Math. Soc., 260 (1980), 553-562. | MR | Zbl
,[Bc2] Periods of periodic points of maps of the circle which have a fixed point, Proc. Amer. Math. Soc., 82 (1981), 481-486. | MR | Zbl
,[BGMY] Periodic points and topological entropy of one dimensional maps, Lecture Notes in Math., Springer-Verlag, Heidelberg, 819 (1980), 18-34. | MR | Zbl
, , and ,[Bk1] Periods implying almost all periods for tree maps, Nonlinearity, 5 (1992), 1375-1382. | MR | Zbl
,[Bk2] On some properties of graph maps : spectral descomposition, Misiurewicz conjecture and abstract sets of periods, preprint, Max-Plank-Institut für Mathematik, Bonn.
,[LL1] On the set of periods for σ maps, to appear in Trans. Amer. Math. Soc. | MR | Zbl
and ,[LL2] On the full periodicity kernel for one-dimensional maps, preprint, 1994,. | MR | Zbl
and ,[LM] Horseshoes, entropy and periods for graph maps, Topology, 32 (1993), 649-664. | MR | Zbl
and ,[LPR1] The full periodicity kernel for σ maps, J. Math. Anal. and Appl., 182 (1994), 639-651. | MR | Zbl
, and ,[LPR2] Sets of periods for maps on connected graphs with zero Euler characteristic having all branching points fixed, to appear in J. Math. Anal. and Appl. | MR | Zbl
, and ,[LPR3] International Journal of Bifurcation and Chaos, 5 (1995), 1395-1405. | Zbl
, and ,[LR] Sur le nombre d'orbites périodiques d'une application continue du cercle en lui-même, C. R. Acad. Sci. Paris, Sér. I Math., 294 (1982), 52-54. | MR | Zbl
and ,[LY] Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992. | MR | Zbl
and ,[M] Periodes 1, 2, 3, 4, 5, 7 equivalen a caos, Master Thesis, Universitat Autònoma de Barcelona, 1982.
,[Sh] Co-existence of the cycles of a continuous mapping of the line into itself (Russian), Ukrain. Math. Zh., 16 (1964), 61-71. | MR
,[St] Periodic points of continuous functions, Math. Mag., 51 (1978), 99-105. | MR | Zbl
,Cited by Sources: