Effective nonvanishing, effective global generation
Annales de l'Institut Fourier, Volume 48 (1998) no. 5, pp. 1359-1378.

We prove a multiple-points higher-jets nonvanishing theorem by the use of local Seshadri constants. Applications are given to effectivity problems such as constructing rational and birational maps into Grassmannians, and the global generation of vector bundles.

On utilise les constantes de Seshadri locales pour donner un résultat de non annulation pour les jets d’ordre supérieur en plusieurs points. On en donne des applications à des problèmes d’effectivité en géométrie algébrique, comme la construction d’applications rationnelles et birationnelles dans les grassmanniennes et la génération globale des fibrés vectoriels.

@article{AIF_1998__48_5_1359_0,
     author = {Cataldo, Mark Andrea A. de},
     title = {Effective nonvanishing, effective global generation},
     journal = {Annales de l'Institut Fourier},
     pages = {1359--1378},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {48},
     number = {5},
     year = {1998},
     doi = {10.5802/aif.1658},
     zbl = {0934.14002},
     mrnumber = {99m:14007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1658/}
}
TY  - JOUR
AU  - Cataldo, Mark Andrea A. de
TI  - Effective nonvanishing, effective global generation
JO  - Annales de l'Institut Fourier
PY  - 1998
DA  - 1998///
SP  - 1359
EP  - 1378
VL  - 48
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1658/
UR  - https://zbmath.org/?q=an%3A0934.14002
UR  - https://www.ams.org/mathscinet-getitem?mr=99m:14007
UR  - https://doi.org/10.5802/aif.1658
DO  - 10.5802/aif.1658
LA  - en
ID  - AIF_1998__48_5_1359_0
ER  - 
%0 Journal Article
%A Cataldo, Mark Andrea A. de
%T Effective nonvanishing, effective global generation
%J Annales de l'Institut Fourier
%D 1998
%P 1359-1378
%V 48
%N 5
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.1658
%R 10.5802/aif.1658
%G en
%F AIF_1998__48_5_1359_0
Cataldo, Mark Andrea A. de. Effective nonvanishing, effective global generation. Annales de l'Institut Fourier, Volume 48 (1998) no. 5, pp. 1359-1378. doi : 10.5802/aif.1658. http://archive.numdam.org/articles/10.5802/aif.1658/

[1] U. Angehrn, Y.-T. Siu, Effective freeness and point separation for adjoint bundles, Invent. Math., 122 (1995), 291-308. | MR | Zbl

[2] M.A. De Cataldo, Singular hermitian metrics on vector bundles, to appear in Jour. für die reine und angew. Math., 502 (1998). | MR | Zbl

[3] J.-P. Demailly, L2 Vanishing Theorems for Positive Line Bundles and Adjunction Theory, in Transcendental Methods in Algebraic Geometry, CIME, Cetraro, (1994), LNM 1646, Springer, 1996. | Zbl

[4] J.-P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom., 3 (1994), 295-345. | MR | Zbl

[5] L. Ein, O. Küchle, R. Lazarsfeld, Local positivity of ample line bundles, Jour. of Diff. Geo., 42 (1995), 193-219. | MR | Zbl

[6] L. Ein, Multiplier Ideals, Vanishing Theorem and Applications, to appear in Proc. A.M.S. Meeting, Santa Cruz, 1995.

[7] H. Esnault, E. Viehweg, Lectures on Vanishing Theorems, DMV Seminar, Band 20, Birkhäuser Verlag, 1992. | Zbl

[8] A. Grothendieck, Éléments de géométrie algébrique, with J. Dieudonné, Publ. Math. de l'I.H.E.S., 17, 1963. | Numdam | Zbl

[9] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, Algebraic Geometry, Sendai, 1985, Adv. Stud. in Pure Math., Vol 10, T. Oda (Ed.), North Holland, Amsterdam, 1987, 283-360. | MR | Zbl

[10] J. Kollár, Effective base point freeness, Math. Ann., 296 (1993), 595-605. | MR | Zbl

[11] J. Kollár, Shafarevich maps and plurigenera of algebraic varieties, Inv. Math., 113 (1993), 177-215. | MR | Zbl

[12] J. Kollár, Shafarevich maps and automorphic forms, Princeton University Press, 1995. | MR | Zbl

[13] J. Kollár, Singularities of pairs, to appear in Proc. A.M.S. Meeting, Santa Cruz, 1995.

[14] H.-G. Rackwitz, Birational geometry of complete intersections, Abh. Math. Sem. Univ. Hamburg, 66 (1996), 263-271. | MR | Zbl

[15] Y.-T. Siu, Very ampleness criterion of double adjoints of line bundles, in Annals of Math. Studies, Vol. 137, Princeton Univ. Press, N.J., 1995. | MR | Zbl

[16] H. Tsuji, Global generation of adjoint bundles, Nagoya Math. J., Vol 142 (1996), 5-16. | MR | Zbl

Cited by Sources: