Nous considérons la question de l’existence d’une réciproque du théorème de Sunada dans le cadre des graphes -réguliers. Nous étudions une réciproque faible du théorème de Sunada qui donne une condition nécessaire et suffisante pour que deux graphes soient isospectraux, en termes d’une condition “presque-Sunada”, et proposons un contre-exemple qui montre qu’il n’y a pas de réciproque forte.
We consider the question of whether there is a converse to the Sunada Theorem in the context of -regular graphs. We give a weak converse to the Sunada Theorem, which gives a necessary and sufficient condition for two graphs to be isospectral in terms of a Sunada-like condition, and show by example that a strong converse does not hold.
@article{AIF_1999__49_2_707_0, author = {Brooks, Robert}, title = {Non-Sunada graphs}, journal = {Annales de l'Institut Fourier}, pages = {707--725}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {2}, year = {1999}, doi = {10.5802/aif.1688}, mrnumber = {2000i:58062}, zbl = {0926.58021}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1688/} }
TY - JOUR AU - Brooks, Robert TI - Non-Sunada graphs JO - Annales de l'Institut Fourier PY - 1999 SP - 707 EP - 725 VL - 49 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1688/ DO - 10.5802/aif.1688 LA - en ID - AIF_1999__49_2_707_0 ER -
Brooks, Robert. Non-Sunada graphs. Annales de l'Institut Fourier, Tome 49 (1999) no. 2, pp. 707-725. doi : 10.5802/aif.1688. http://archive.numdam.org/articles/10.5802/aif.1688/
[AG] Finite Common Coverings of Pairs of Graphs, J. Comb. Theory, B 30 (1981), 184-187. | MR | Zbl
, ,[Br] Twist Surfaces, to appear in Proc. Cortona Conf. | Zbl
,[BGG] Mutually Isospectral Riemann Surfaces, Adv. Math., 138 (1998), 306-322. | MR | Zbl
, , ,[BPP] On Cheeger's Inequality, Comm. Math. Helv., 68 (1993), 599-621. | EuDML | MR | Zbl
, , ,[CDGT] Recent Results in the Theory of Graph Spectra, Ann. Disc. Math. 36, North Holland, 1988. | MR | Zbl
, , , ,[GGSWW] Isospectral Deformations of Closed Riemannian Manifolds with Different Scalar Curvature, Ann. Inst. Fourier, 48-2 (1998), 593-607. | EuDML | Numdam | MR | Zbl
, , , , ,[Le] Finite Common Coverings of Graphs, J. Comb. Theory, B 33 (1982), 231-238. | MR | Zbl
,[LMZ] Superrigidity for the Commensurability Group of Tree Lattices, Comm. Math. Helv., 69 (1994), 523-548. | EuDML | MR | Zbl
, , ,[Pe1] Quelques applications de la théorie des représentations en géométrie spectrale, Thèse d'habilitation, Grenoble, 1997; Rendiconti di Mathematica, 18 (1998), 1-64. | MR | Zbl
,[Pe2] Une réciproque générique du théorème de Sunada, Compositio Math., 109 (1997), 357-365. | MR | Zbl
,[Pe3] Variétés isospectrales et représentations de groupes, in Brooks, Gordon, and Perry ed., Geometry of the Spectrum, Contemp. Math, 173 (1994), 231-240. | MR | Zbl
,[Qu] The Combinatorics of Seidel Switching, preprint.
,[Su] Riemannian Coverings and Isospectral Manifolds, Ann. Math., 121 (1985), 169-186. | MR | Zbl
,Cité par Sources :