We study the basic algebraic properties of a 3-variable Tutte polynomial the author has associated with a morphism of matroids, more precisely with a matroid strong map, or matroid perspective in the present paper, or, equivalently by the Factorization Theorem, with a matroid together with a distinguished subset of elements. Most algebraic properties of the usual 2-variable Tutte polynomial of a matroid generalize to the 3-variable polynomial. Among specific properties we show that the 3-variable Tutte polynomial of a matroid pointed by a normal subset can be used to abridge the computation of the 2-variable Tutte polynomial of , and that the 3-variable Tutte polynomial of a matroid perspective is computationally equivalent to the two-variable Tutte polynomials of the matroids of its Higgs factorization.
On étudie les propriétés algébriques fondamentales d’un polynôme de Tutte à 3 variables que l’auteur a associé à un morphisme de matroïdes - plus précisément à un morphisme fort, ou perspective dans le présent article, ou encore, de façon équivalente d’après le Théorème de Factorisation, à un matroïde muni d’un sous-ensemble distingué d’éléments. La plupart des propriétés algébriques du polynôme de Tutte habituel à 2 variables se généralisent au polynôme à 3 variables. Parmi les propriétés spécifiques on montre que le polynôme à 3 variables d’un matroïde pointé par un sous-ensemble normal peut être utilisé pour raccourcir le calcul du polynôme de Tutte (à 2 variables) de , et que le polynôme de Tutte à 3 variables d’une perspective de matroïdes est équivalent pour le calcul aux polynômes de Tutte à 2 variables des matroïdes de sa factorisation de Higgs.
@article{AIF_1999__49_3_973_0, author = {Las Vergnas, Michel}, title = {The {Tutte} polynomial of a morphism of matroids {I.} {Set-pointed} matroids and matroid perspectives}, journal = {Annales de l'Institut Fourier}, pages = {973--1015}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {3}, year = {1999}, doi = {10.5802/aif.1702}, mrnumber = {2000f:05024}, zbl = {0917.05019}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1702/} }
TY - JOUR AU - Las Vergnas, Michel TI - The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives JO - Annales de l'Institut Fourier PY - 1999 SP - 973 EP - 1015 VL - 49 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1702/ DO - 10.5802/aif.1702 LA - en ID - AIF_1999__49_3_973_0 ER -
%0 Journal Article %A Las Vergnas, Michel %T The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives %J Annales de l'Institut Fourier %D 1999 %P 973-1015 %V 49 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1702/ %R 10.5802/aif.1702 %G en %F AIF_1999__49_3_973_0
Las Vergnas, Michel. The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives. Annales de l'Institut Fourier, Volume 49 (1999) no. 3, pp. 973-1015. doi : 10.5802/aif.1702. http://archive.numdam.org/articles/10.5802/aif.1702/
[1] Combinatorial Theory, Springer, 1979. | MR | Zbl
,[2] On the Martin and Tutte polynomial, J. Combinatorial Theory, ser.B, to appear (26 p.).
, , ,[3] A decomposition for combinatorial geometries, Trans. Amer. Math. Soc., 171 (1972), 235-282. | MR | Zbl
,[4] Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc., 203 (1975), 1-44. | MR | Zbl
,[5] A combinatorial perspective on the Radon convexity theorem, Geometriæ Dedicata, 5 (1976), 459-466. | MR | Zbl
,[6] The broken-circuit complex, Trans. Amer. Math. Soc., 234 (1977), 417-433. | MR | Zbl
,[7] Uniquely representable combinatorial geometries, Teorie Combinatorie (vol. 1), B. Serge ed., Accademia Nazionale dei Lincei, Roma, 1976, 83-108. | Zbl
, ,[8] The Tutte polynomial and its applications, chapter 6 in : White N. (ed.), Matroid Applications, Cambridge University Press, 1992. | MR | Zbl
, ,[9] The Tutte polynomial of a ported matroid, J. Combinatorial Theory, ser. B, 46 (1989), 96-117. | MR | Zbl
,[10] Euler's relation, Möbius functions, and matroid identities, Geometriæ Dedicata, 12 (1982), 147-162. | MR | Zbl
, , ,[11] A higher invariant for matroids, J. Combinatorial Theory, 2 (1967), 406-416. | MR | Zbl
,[12] Möbius inversions in lattices, Arch. Math. (Basel), 19 (1968), 595-607. | MR | Zbl
,[13] The Tutte polynomial, Aequationes Mathematicæ, 3 (1969), 211-229. | MR | Zbl
,[14] The Tutte polynomial of a morphism of matroids, III. Vectorial matroids, 19 pp., J. Combinatorial Theory, ser. B, to appear.
, ,[15] On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions and orientations of graphs, Trans. Amer. Math. Soc., 280 (1983), 97-126. | MR | Zbl
, ,[16] On Tutte polynomials of matroids representable over GF(q), European J. Combinatorics, 10 (1989), 247-255. | MR | Zbl
,[17] Matroïdes orientables, C.R. Acad. Sci. Paris, sér. A, 280 (1975), 61-64. | MR | Zbl
,[18] Sur les extensions principales d'un matroïde C.R. Acad. Sci. Paris, sér. A, 280 (1975), 187-190. | MR | Zbl
,[19] Extensions normales d'un matroïde, polynôme de Tutte d'un morphisme, C.R. Acad. Sci. Paris, sér. A, 280 (1975), 1479-1482. | MR | Zbl
,[20] Acyclic and totally cyclic orientations of combinatorial geometries, Discrete Mathematics, 20 (1977), 51-61. | MR | Zbl
,[21] Convexity in oriented matroids, J. Combinatorial Theory, ser. B, 29 (1980), 231-243. | MR | Zbl
,[22] On the Tutte polynomial of a morphism of matroid, Annals Discrete Mathematics, 8 (1980), 7-20. | MR | Zbl
,[23] Eulerian circuits of 4-valent graphs imbedded in surfaces, in: L. Lovász & V. Sós (eds.), Algebraic Methods in Graph Theory, North-Holland, 1981, 451-478. | MR | Zbl
,[24] The Tutte polynomial of a morphism of matroids, II. Activities of orientations, in: J.A. Bondy & U.S.R. Murty (eds.), Progress in Graph Theory, Academic Press, 1984, 367-380. | MR | Zbl
,[25] On the foundations of combinatorial theory. I: Theory of Möbius functions, Z. für Wahrscheinlichkeitstheorie und verw. Gebiete, 2 (1964), 340-368. | MR | Zbl
,[26] Modular elements of geometric lattices, Algebra Universalis, 1 (1971), 214-217. | MR | Zbl
,[27] Acyclic orientations of graphs, Discrete Mathematics, 5 (1973), 171-178. | MR | Zbl
,[28] A contribution to the theory of dichromatic polynomials, Canadian J. Math., 6 (1954), 80-91. | MR | Zbl
,[29] The dichromatic polynomial, Proc. Fifth Bristish Combinatorial Conference (Aberdeen 1975), Utilitas Math., Winnipeg 1976, 605-635. | MR | Zbl
,[30] Theory of Matroids, Cambridge University Press, 1986. | MR | Zbl
(ed.),[31] Facing up to arrangements: face-count formulas for partitions of spaces by hyperplanes, Memoirs Amer. Math. Soc., 154 (1975). | MR | Zbl
,Cited by Sources: