Curvature flows of maximal integral triangulations
Annales de l'Institut Fourier, Volume 49 (1999) no. 4, pp. 1115-1128.

This paper describes local configurations of some planar triangulations. A Gauss-Bonnet-like formula holds locally for a kind of discrete “curvature” associated to such triangulations.

Ce papier décrit les configurations locales de certaines triangulations du plan. Ces triangulations admettent une “courbure” discrète pour laquelle on a localement une formule de type Gauss-Bonnet

@article{AIF_1999__49_4_1115_0,
     author = {Bacher, Roland},
     title = {Curvature flows of maximal integral triangulations},
     journal = {Annales de l'Institut Fourier},
     pages = {1115--1128},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {49},
     number = {4},
     year = {1999},
     doi = {10.5802/aif.1710},
     mrnumber = {2000h:52016},
     zbl = {0947.05017},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1710/}
}
TY  - JOUR
AU  - Bacher, Roland
TI  - Curvature flows of maximal integral triangulations
JO  - Annales de l'Institut Fourier
PY  - 1999
SP  - 1115
EP  - 1128
VL  - 49
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1710/
DO  - 10.5802/aif.1710
LA  - en
ID  - AIF_1999__49_4_1115_0
ER  - 
%0 Journal Article
%A Bacher, Roland
%T Curvature flows of maximal integral triangulations
%J Annales de l'Institut Fourier
%D 1999
%P 1115-1128
%V 49
%N 4
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.1710/
%R 10.5802/aif.1710
%G en
%F AIF_1999__49_4_1115_0
Bacher, Roland. Curvature flows of maximal integral triangulations. Annales de l'Institut Fourier, Volume 49 (1999) no. 4, pp. 1115-1128. doi : 10.5802/aif.1710. http://archive.numdam.org/articles/10.5802/aif.1710/

[A] M. Aigner, Combinatorial Theory, Springer, 1979. | MR | Zbl

[C] H.S.M. Coxeter, An introduction to geometry, Wiley, 1989.

[DC] M. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976. | MR | Zbl

Cited by Sources: