Let be a bounded symmetric domain in and an irreducible arithmetic lattice which operates freely on . We prove that the cusp–compactification of is hyperbolic.
Soit un domaine symétrique borné dans et soit un réseau arithmétique irréductible opérant librement sur . On démontre que la compactification cuspidale de est hyperbolique.
@article{AIF_2000__50_1_197_0, author = {Oeljeklaus, Eberhard and Schmerling, Christina}, title = {Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices}, journal = {Annales de l'Institut Fourier}, pages = {197--210}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {1}, year = {2000}, doi = {10.5802/aif.1751}, mrnumber = {2001j:32021}, zbl = {0952.32015}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1751/} }
TY - JOUR AU - Oeljeklaus, Eberhard AU - Schmerling, Christina TI - Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices JO - Annales de l'Institut Fourier PY - 2000 SP - 197 EP - 210 VL - 50 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1751/ DO - 10.5802/aif.1751 LA - en ID - AIF_2000__50_1_197_0 ER -
%0 Journal Article %A Oeljeklaus, Eberhard %A Schmerling, Christina %T Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices %J Annales de l'Institut Fourier %D 2000 %P 197-210 %V 50 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1751/ %R 10.5802/aif.1751 %G en %F AIF_2000__50_1_197_0
Oeljeklaus, Eberhard; Schmerling, Christina. Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices. Annales de l'Institut Fourier, Volume 50 (2000) no. 1, pp. 197-210. doi : 10.5802/aif.1751. http://archive.numdam.org/articles/10.5802/aif.1751/
[AMRT] Smooth compactification of locally symmetric varieties. Lie groups : History, Frontiers and application, vol. IV, Math. Sci. Press, 1975. | MR | Zbl
, , ,[BB] Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math., 84 (1966), 422-528. | MR | Zbl
,[Bo] Introduction aux groupes arithmetiques, Hermann, 1969. | MR | Zbl
[BPV] Compact complex surfaces, Erg. d. Mathematik, 3. Folge, Bd. 4, Springer (1984). | MR | Zbl
, ,[Br] Compact manifolds and hyperbolicity, Trans. AMS, 235 (1976), 213-219. | MR | Zbl
[Fr1] Eine Bemerkung zur Theorie der Hilbertschen Modulmannigfaltigkeiten hoher Stufe, Math. Z., 171 (1980), 27-35. | MR | Zbl
[Fr2] Hilbert modular forms, Springer, 1990. | MR | Zbl
[GR] Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z., 89 (1965), 108-125. | MR | Zbl
,[He] The parabolic contribution to the number of linearly independent automorphic forms on a certain bounded domain, Amer. J. of Math., 94 (1972), 1078-1110. | MR | Zbl
[Hi] Hilbert modular surfaces, Enseign. Math., (1973), 183-281. | MR | Zbl
[Ho] Ball and Surface Arithmetics, Aspects of mathematics, Vol. 29, Vieweg, 1998. | MR | Zbl
[Ko] Einstein-Kähler metrics on open algebraic surfaces of general type, Tohoku Math. J., 37 (1985), 43-77. | MR | Zbl
[Mu] Hirzebruch's proportionality theorem in the non-compact case, Inv. Math., 42 (1977), 239-272. | MR | Zbl
[S] Eine Hyperbolizitätsuntersuchung für reine arithmetische Quotientenflächen symmetrischer beschränkter Gebiete, Dissertation, Bremen, 1997.
[ST] Hyperbolicity and branched coverings, Math. Ann., 286 (1990), 537-548. | MR | Zbl
,[vdG] Hilbert modular surfaces, Erg. d. Math., 3, Folge, Vol. 16, Springer, 1988. | MR | Zbl
Cited by Sources: