Let be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We apply the -adic Nevanlinna theory to functional equations of the form , where , are meromorphic functions in , or in an “open disk”, satisfying conditions on the order of its zeros and poles. In various cases we show that and must be constant when they are meromorphic in all , or they must be quotients of bounded functions when they are meromorphic in an “open disk”. In particular, we have an easy way to obtain again Picard-Berkovich’s theorem for curves of genus and . These results apply to equations , when are meromorphic functions, or entire functions in or analytic functions in an “open disk”. We finally apply the method to Yoshida’s equation , when , and we describe the only case where solutions exist: must be a polynomial of the form where divides , and then the solutions are the functions of the form , with .
Soit un corps ultramétrique complet algébriquement clos de caractéristique nulle. On applique la théorie de Nevanlinna -adique aux équations de la forme , où , et sont des fonctions méromorphes dans ou dans un disque ouvert, ainsi qu’à l’équation de Yoshida.
@article{AIF_2000__50_3_751_0, author = {Boutabaa, Abdelbaki and Escassut, Alain}, title = {Applications of the $p$-adic {Nevanlinna} theory to functional equations}, journal = {Annales de l'Institut Fourier}, pages = {751--766}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {3}, year = {2000}, doi = {10.5802/aif.1771}, mrnumber = {2002a:30073}, zbl = {1063.30043}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1771/} }
TY - JOUR AU - Boutabaa, Abdelbaki AU - Escassut, Alain TI - Applications of the $p$-adic Nevanlinna theory to functional equations JO - Annales de l'Institut Fourier PY - 2000 SP - 751 EP - 766 VL - 50 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1771/ DO - 10.5802/aif.1771 LA - en ID - AIF_2000__50_3_751_0 ER -
%0 Journal Article %A Boutabaa, Abdelbaki %A Escassut, Alain %T Applications of the $p$-adic Nevanlinna theory to functional equations %J Annales de l'Institut Fourier %D 2000 %P 751-766 %V 50 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1771/ %R 10.5802/aif.1771 %G en %F AIF_2000__50_3_751_0
Boutabaa, Abdelbaki; Escassut, Alain. Applications of the $p$-adic Nevanlinna theory to functional equations. Annales de l'Institut Fourier, Volume 50 (2000) no. 3, pp. 751-766. doi : 10.5802/aif.1771. http://archive.numdam.org/articles/10.5802/aif.1771/
[1] Spectral Theory and Analytic Geometry over Non-archimedean Fields, AMS Surveys and Monographs, 33 (1990). | MR | Zbl
,[2] Théorie de Nevanlinna p-adique, Manuscripta Mathematica, 67 (1990), 251-269. | MR | Zbl
,[3] An Improvement of the p-adic Nevanlinna Theory and Application to Meromorphic Functions, Lecture Notes in Pure and Applied Mathematics n° 207 (Marcel Dekker). | MR | Zbl
, ,[4] On some p-adic functional equations, Lecture Notes in Pure and Applied Mathematics (Marcel Dekker), 192 (1997), 49-59. | MR | Zbl
,[5] On uniqueness of p-adic entire functions, Indagationes Mathematicae, 8 (1997), 145-155. | MR | Zbl
, , and ,[6] Urs and ursim for p-adic unbounded analytic functions inside a disk, (preprint).
, ,[7] Property f— (S) = g— (S) for p-adic entire and meromorphic functions, to appear in Rendiconti del Circolo Matematico di Palermo.
, ,[8] Non-archimedean analytic curves in Abelian varieties, Math. Ann., 300 (1994), 393-404. | MR | Zbl
,[9] Analytic Elements in p-adic Analysis, World Scientific Publishing Co. Pte. Ltd., Singapore, 1995. | MR | Zbl
,[10] Urs, ursim, and non-urs, Journal of Number Theory, 75 (1999), 133-144. | MR | Zbl
, , and ,[11] On the equation fn + gn = 1, Bull. Amer. Math. Soc., 72 (1966), 86-88. | MR | Zbl
,[12] An Introduction to Differential Algebra, Actualités Scientifiques et Industrielles 1251, Hermann, Paris (1957). | MR | Zbl
,[13] Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthiers-Villars, Paris, 1929. | JFM
,[14] Traité d'analyse II, Gauthier-Villars, Paris, 1925.
,Cited by Sources: