A relativization of earlier constructions and Nori’s rational Lefschetz theorem enable interesting examples of the “topological filtration” on algebraic cycles.
Une version relative de constructions récentes et le théorème de Lefschetz rationnel de Nori fournissent des exemples intéressants de la filtration topologique sur les cycles algébriques.
@article{AIF_2000__50_4_1073_0, author = {Friedlander, Eric M.}, title = {Relative {Chow} correspondences and the {Griffiths} group}, journal = {Annales de l'Institut Fourier}, pages = {1073--1098}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {4}, year = {2000}, doi = {10.5802/aif.1785}, zbl = {0960.14005}, mrnumber = {1799738}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1785/} }
TY - JOUR AU - Friedlander, Eric M. TI - Relative Chow correspondences and the Griffiths group JO - Annales de l'Institut Fourier PY - 2000 SP - 1073 EP - 1098 VL - 50 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1785/ DO - 10.5802/aif.1785 LA - en ID - AIF_2000__50_4_1073_0 ER -
%0 Journal Article %A Friedlander, Eric M. %T Relative Chow correspondences and the Griffiths group %J Annales de l'Institut Fourier %D 2000 %P 1073-1098 %V 50 %N 4 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1785/ %R 10.5802/aif.1785 %G en %F AIF_2000__50_4_1073_0
Friedlander, Eric M. Relative Chow correspondences and the Griffiths group. Annales de l'Institut Fourier, Volume 50 (2000) no. 4, pp. 1073-1098. doi : 10.5802/aif.1785. http://archive.numdam.org/articles/10.5802/aif.1785/
[A] Homotopy groups of the integral cycle groups, Topology, 1 (1962), 257-299. | MR | Zbl
,[AF] The Lefschetz theorem on hyperplane sections, Ann. of Math., (2), 69 (1959), 713-717. | MR | Zbl
and ,[B] Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finite, Fonctions de plusieurs variables, II, Lecture Notes in Math. 482, Springer-Verlag, (1975), 1-158. | MR | Zbl
,[De] Théorie de Hodge III, Pub. I.H.E.S., 44 (1974), 5-77. | EuDML | Numdam | MR | Zbl
,[D] Lectures on Algebraic Topology, Springer-Verlag, 1972. | MR | Zbl
,[F1] Algebraic cycles, Chow varieties, and Lawson homology, Compositio Math., 77 (1991), 55-93. | EuDML | Numdam | MR | Zbl
,[F2] Filtrations on algebraic cycles and homology, Annales Ec. Norm. Sup. 4e série, t. 28 (1995), 317-343. | EuDML | Numdam | MR | Zbl
,[F3] Algebraic cocycles on quasi-projective varieties, Compositio Math., 110 (1998), 127-162. | MR | Zbl
,[F4] Bloch-Ogus properties for topological cycle theory, Annales Ec. Norm. Sup., 33 (2000), 57-79. | EuDML | Numdam | MR | Zbl
,[FG] Cycle spaces and intersection theory, in Topological Methods in Modern Mathematics, (1993), 325-370. | MR | Zbl
and ,[FL1] A theory of algebraic cocycles, Annals of Math., 136 (1992), 361-428. | MR | Zbl
and ,[FL2] Moving algebraic cycles of bounded degree, Inventiones Math., 132 (1998), 92-119. | MR | Zbl
and ,[FL3] Graph mappings and Poincaré duality, preprint.
and ,[FM1] Filtrations on the homology of algebraic varieties, Memoir, A.M.S., 529 (1994). | MR | Zbl
and ,[FM2] Correspondence homomorphisms for singular varieties, Ann. Inst. Fourier, Grenoble, 44-3 (1994), 703-727. | Numdam | MR | Zbl
and ,[FW] Function spaces and continuous algebraic pairings for varieties, to appear in Compositio Math. | Zbl
and ,[H] Triangulations of algebraic sets, Proc. of Symposia in Pure Math., 29 (1975), 165-185. | MR | Zbl
,[LiF] Completions and fibrations for topological monoids, Trans. A.M.S., 340 (1993), 127-147. | MR | Zbl
,[N] Algebraic cycles and Hodge theoretic connectivity, Inventiones Math., 111 (1993), 349-373. | MR | Zbl
,[Sp] Algebraic Topology, McGraw-Hill, 1966. | MR | Zbl
,[SV] Relative cycles and Chow sheaves, Cycles, transfers, and Motivic Homology Theories (V. Voevodsky, A. Suslin, and E. Friedlander, ed.), Annals of Math. Studies, 143 (2000), 10-86. | MR | Zbl
and ,Cited by Sources: