Projectively Anosov flows with differentiable (un)stable foliations
Annales de l'Institut Fourier, Volume 50 (2000) no. 5, pp. 1617-1647.

We consider projectively Anosov flows with differentiable stable and unstable foliations. We characterize the flows on T 2 which can be extended on a neighbourhood of T 2 into a projectively Anosov flow so that T 2 is a compact leaf of the stable foliation. Furthermore, to realize this extension on an arbitrary closed 3-manifold, the topology of this manifold plays an essential role. Thus, we give the classification of projectively Anosov flows on T 3 . In this case, the only flows on T 2 which extend to T 3 (in the above way) are the linear flows.

On considère les flots projectivement Anosov dont les feuilletages stable et instable sont différentiables. On caractérise d’abord les flots sur T 2 qui, au voisinage de T 2 , admettent une extension en un flot projectivement Anosov, telle que T 2 soit une feuille compacte du feuilletage stable de ce flot. Si on veut, de plus, réaliser cette extension sur une variété fermée quelconque de dimension 3, la topologie de cette variété joue un rôle essentiel. On classifie ainsi les flots projectivement Anosov sur T 3 . Dans ce cas, les seuls flots sur T 2 qui s’étendent (comme ci-dessus) à T 3 sont des flots linéaires.

@article{AIF_2000__50_5_1617_0,
     author = {Noda, Takeo},
     title = {Projectively {Anosov} flows with differentiable (un)stable foliations},
     journal = {Annales de l'Institut Fourier},
     pages = {1617--1647},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {5},
     year = {2000},
     doi = {10.5802/aif.1802},
     mrnumber = {2001m:37055},
     zbl = {01528717},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1802/}
}
TY  - JOUR
AU  - Noda, Takeo
TI  - Projectively Anosov flows with differentiable (un)stable foliations
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 1617
EP  - 1647
VL  - 50
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1802/
DO  - 10.5802/aif.1802
LA  - en
ID  - AIF_2000__50_5_1617_0
ER  - 
%0 Journal Article
%A Noda, Takeo
%T Projectively Anosov flows with differentiable (un)stable foliations
%J Annales de l'Institut Fourier
%D 2000
%P 1617-1647
%V 50
%N 5
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.1802/
%R 10.5802/aif.1802
%G en
%F AIF_2000__50_5_1617_0
Noda, Takeo. Projectively Anosov flows with differentiable (un)stable foliations. Annales de l'Institut Fourier, Volume 50 (2000) no. 5, pp. 1617-1647. doi : 10.5802/aif.1802. http://archive.numdam.org/articles/10.5802/aif.1802/

[1] C. Camacho, A. Lins Neto, Geometric theory of foliations, Translated from the Portuguese, Birkhäuser Boston, Inc., Boston, Mass., 1985. | MR | Zbl

[2] E.A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. | MR | Zbl

[3] A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math., 9, vol. 11 (1932), 333-375. | JFM | Numdam

[4] Y. Eliashberg, W.P. Thurston, Confoliations, University Lecture Series 13, Amer. Math. Soc. Providence, RI, 1998. | MR | Zbl

[5] E. Ghys, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup., 4, 20 (1987), 251-270. | Numdam | MR | Zbl

[6] E. Ghys, Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier, 42, 1-2 (1992), 209-247. | Numdam | MR | Zbl

[7] E. Ghys, Rigidité différentiable des groupes fuchsiens, I.H.E.S. Publ. Math., 78 (1993), 163-185. | Numdam | MR | Zbl

[8] H. Imanishi, On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Kyoto Univ., 14 (1974), 607-634. | MR | Zbl

[9] G. Levitt, Feuilletages des variétés de dimension 3 qui sont des fibrés en cercles, Comment. Math. Helv., 53, n°4 (1978), 572-594. | MR | Zbl

[10] Y. Mitsumatsu, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier, 45, n°5 (1995), 1407-1421. | Numdam | MR | Zbl

[11] Y. Mitsumatsu, Projectively Anosov flows and bi-contact structures on 3-manifolds, preprint in preparation.

[12] R. Moussu, R. Roussarie, Relations de conjugaison et de cobordisme entre certains feuilletages, I.H.E.S. Publ. Math., 43 (1974), 142-168. | EuDML | Numdam | MR | Zbl

[13] T. Noda, T. Tsuboi, Regular projectively Anosov flows without compact leaves, preprint in preparation.

[14] S.P. Novikov, The topology of foliations, Trudy Moskov. Mat. Ob., 14 (1965), 248-278; A.M.S. Transl. (1967), 286-304. | MR | Zbl

[15] R. Roussarie, Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, I.H.E.S. Publ. Math., 43 (1974), 101-141. | EuDML | Numdam | MR | Zbl

[16] S. Sternberg, Local Cn transformations of the real line, Duke Math. J., 24 (1957), 97-102. | MR | Zbl

[17] I. Tamura, Topology of foliations: an introduction, Translated from the 1976 Japanese edition, Translation of Mathematical Monographs 97, American Mathematical Society, Providence, RI, 1992. | MR | Zbl

[18] I. Tamura, A. Sato, On transverse foliations, I.H.E.S. Publ. Math., 54 (1981), 205-235. | Numdam | MR | Zbl

[19] W.P. Thurston, Foliations of 3-manifolds which are circle bundles, PhD. Thesis, UC Berkeley (1972).

[20] J.-C. Yoccoz, Centralisateurs et conjugaison différentiable des difféomorphismes du cercle, Thèse, Univ. Paris-Sud, 1985.

Cited by Sources: