On démontre que si est une variété fortement pseudoconvexe telle que soit de type fini et son ensemble exceptionnel de dimension 1, alors est plongeable dans si et seulement si est une variété kählérienne; en outre cette condition est vérifiée si et seulement si ne contient aucune courbe effective qui est homologue à zéro.
In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold , with 1- dimensional exceptional set and finitely generated second homology group , is embeddable in if and only if is Kähler, and this case occurs only when does not contain any effective curve which is a boundary.
Keywords: 1-convex manifolds, Kähler manifolds
Mot clés : variétés 1-convexes, variétés kählériennes
@article{AIF_2001__51_1_99_0, author = {Alessandrini, Lucia and Bassanelli, Giovanni}, title = {On the embedding of 1-convex manifolds with 1-dimensional exceptional set}, journal = {Annales de l'Institut Fourier}, pages = {99--108}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {1}, year = {2001}, doi = {10.5802/aif.1817}, zbl = {0966.32008}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1817/} }
TY - JOUR AU - Alessandrini, Lucia AU - Bassanelli, Giovanni TI - On the embedding of 1-convex manifolds with 1-dimensional exceptional set JO - Annales de l'Institut Fourier PY - 2001 SP - 99 EP - 108 VL - 51 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1817/ DO - 10.5802/aif.1817 LA - en ID - AIF_2001__51_1_99_0 ER -
%0 Journal Article %A Alessandrini, Lucia %A Bassanelli, Giovanni %T On the embedding of 1-convex manifolds with 1-dimensional exceptional set %J Annales de l'Institut Fourier %D 2001 %P 99-108 %V 51 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1817/ %R 10.5802/aif.1817 %G en %F AIF_2001__51_1_99_0
Alessandrini, Lucia; Bassanelli, Giovanni. On the embedding of 1-convex manifolds with 1-dimensional exceptional set. Annales de l'Institut Fourier, Tome 51 (2001) no. 1, pp. 99-108. doi : 10.5802/aif.1817. http://archive.numdam.org/articles/10.5802/aif.1817/
[1] Metric properties of manifolds bimeromorphic to compact Kähler spaces, J. Differential Geom., Volume 37 (1993), pp. 95-121 | MR | Zbl
[2] Sur les fibres infinitésimales d'un morphisme propre d'espaces complexes, Sém. F. Norguet, Fonctions de plusieurs variables complexes IV (Lect. Notes Math.), Volume 807 (1980) | Zbl
[3] A cut-off theorem for plurisubharmonic currents, Forum Math., Volume 6 (1994), pp. 567-595 | DOI | MR | Zbl
[4] On the embedding of 1-convex manifolds with 1-dimensional exceptional set, Comment. Math. Helv., Volume 60 (1985), pp. 458-465 | DOI | MR | Zbl
[5] On 1-convex manifolds with 1-dimensional exceptional set (Collection of papers in memory of Martin Jurchescu), Rev. Roum. Math. Pures Appl., Volume 43 (1998), pp. 97-104 | MR | Zbl
[6] On the Oka-Grauert principle for 1-convex manifolds, Math. Ann., Volume 310 (1998) no. 3, pp. 561-569 | DOI | MR | Zbl
[7] On Hulls of Meromorphy and a Class of Stein Manifolds, Ann. Scuola Norm. Sup., Volume XXVIII (1999), pp. 405-412 | Numdam | MR | Zbl
[8] On strongly q-pseudoconvex spaces with positive vector bundles, Mem. Fac. Sci. Kyushu Univ. Ser. A, Volume 28 (1974), pp. 135-146 | DOI | MR | Zbl
[9] An intrinsec characterization of Kähler manifolds, Invent. Math., Volume 74 (1983), pp. 169-198 | DOI | MR | Zbl
[10] On the existence of special metrics in complex geometry, Acta Math., Volume 143 (1983), pp. 261-295 | MR | Zbl
[11] The Levi problem for complex spaces II, Math. Ann., Volume 146 (1962), pp. 195-216 | DOI | MR | Zbl
[12] Topological Vector Spaces, Graduate Texts in Mathematics, 3, Springer, 1970 | Zbl
[13] Familien negativer Vektorbündel und 1-convexe Abbilungen, Abh. Math. Sem. Univ. Hamburg, Volume 47 (1978), pp. 150-170 | DOI | MR | Zbl
[14] Embedding strongly -convex-concave spaces in , Several complex variables (Proc. Sympos. Pure Math.), Volume Vol. XXX, Part 2 (1977), pp. 41-44 | Zbl
[15] Embedding theorems and Kählerity for 1-convex spaces, Comment. Math. Helv., Volume 57 (1982), pp. 196-201 | DOI | MR | Zbl
[16] On the Kählerian geometry of 1-convex threefolds, Forum Math., Volume 7 (1995), pp. 131-146 | DOI | MR | Zbl
Cité par Sources :