Linear actions of free groups
Annales de l'Institut Fourier, Volume 51 (2001) no. 1, pp. 131-150.

In this paper we study dynamical properties of linear actions by free groups via the induced action on projective space. This point of view allows us to introduce techniques from Thermodynamic Formalism. In particular, we obtain estimates on the growth of orbits and their limiting distribution on projective space.

Dans cet article nous étudions les propriétés dynamiques des actions linéaires des groupes libres par l'action induite sur l'espace projectif. Ce point de vue nous permet de présenter des techniques du formalisme thermodynamique. En particulier, nous obtenons des estimations sur les croissances des orbites et leurs distributions limites sur l'espace projectif.

DOI: 10.5802/aif.1819
Classification: 37C35, 37C85, 37D35, 20G20
Keywords: linear action, free group, projective space, thermodynamic formalism, orbit counting
Mot clés : action linéaire, groupe libre, espace projectif, formalisme thermodynamique, compte d'orbites
Pollicott, Mark 1; Sharp, Richard 1

1 University of Manchester, Department of Mathematics, Oxford Road, Manchester M13 9PL (Grande-Bretagne)
@article{AIF_2001__51_1_131_0,
     author = {Pollicott, Mark and Sharp, Richard},
     title = {Linear actions of free groups},
     journal = {Annales de l'Institut Fourier},
     pages = {131--150},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {51},
     number = {1},
     year = {2001},
     doi = {10.5802/aif.1819},
     mrnumber = {1821072},
     zbl = {0967.37016},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1819/}
}
TY  - JOUR
AU  - Pollicott, Mark
AU  - Sharp, Richard
TI  - Linear actions of free groups
JO  - Annales de l'Institut Fourier
PY  - 2001
SP  - 131
EP  - 150
VL  - 51
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1819/
DO  - 10.5802/aif.1819
LA  - en
ID  - AIF_2001__51_1_131_0
ER  - 
%0 Journal Article
%A Pollicott, Mark
%A Sharp, Richard
%T Linear actions of free groups
%J Annales de l'Institut Fourier
%D 2001
%P 131-150
%V 51
%N 1
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.1819/
%R 10.5802/aif.1819
%G en
%F AIF_2001__51_1_131_0
Pollicott, Mark; Sharp, Richard. Linear actions of free groups. Annales de l'Institut Fourier, Volume 51 (2001) no. 1, pp. 131-150. doi : 10.5802/aif.1819. http://archive.numdam.org/articles/10.5802/aif.1819/

[1] J. Dani Density properties of orbits under discrete groups, J. Indian Math. Soc., Volume 39 (1976), pp. 189-217 | MR | Zbl

[2] W. Ellison; F. Ellison Prime Numbers, Wiley, New York, 1985 | MR | Zbl

[3] L. Greenberg Flows on homogeneous spaces (Ann. Math. Studies), Volume 53 (1963), pp. 85-103 | Zbl

[4] P. de la Harpe Free groups in linear groups, Enseign. Math., Volume 29 (1983), pp. 129-144 | MR | Zbl

[5] T. Kato Perturbation Theory for Linear Operators, Springer Verlag, Berlin, 1976 | MR | Zbl

[6] S. Lalley Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta. Math., Volume 163 (1989), pp. 1-55 | DOI | MR | Zbl

[7] W. Parry; M. Pollicott Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque (1990) no. 187-188, pp. 1-268 | Numdam | MR | Zbl

[8] S.J. Patterson The limit set of a Fuchsian group, Acta. Math., Volume 136 (1976), pp. 241-273 | DOI | MR | Zbl

[9] M. Pollicott; R. Sharp Comparison theorems and orbit counting in hyperbolic geometry, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 473-499 | DOI | MR | Zbl

[10] D. Ruelle Thermodynamic Formalism, Addison Wesley, Redding, Mass., 1978 | MR | Zbl

[11] D. Sullivan The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., Volume 50 (1979), pp. 171-202 | DOI | EuDML | Numdam | MR | Zbl

[12] J. Tits Free subgroups in linear groups, J. Algebra, Volume 20 (1972), pp. 250-270 | DOI | MR | Zbl

[13] M. Wojtkowski On uniform contraction generated by positive matrices, Random matrices and their applications (Brunswick, Maine, 1984) (Contemp. Math.), Volume 50 (1986), pp. 109-118 | Zbl

Cited by Sources: