Nous décrivons des représentations de certaines algèbres superconformes dans le complexe de Weil semi-infini de l'algèbre des lacets d'une algèbre de Lie complexe de dimension finie et dans la cohomologie semi-infinie. Nous démontrons que dans le cas où l'algèbre de Lie est munie d'une forme bilinéaire symétrique non dégénérée invariante, la cohomologie semi-infinie relative de l'algèbre des lacets admet une structure, qui est l'analogue de la structure classique de la cohomologie de de Rham des variétés kählériennes.
We describe representations of certain superconformal algebras in the semi-infinite Weil complex related to the loop algebra of a complex finite-dimensional Lie algebra and in the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite cohomology of the loop algebra has a structure, which is analogous to the classical structure of the de Rham cohomology in Kähler geometry.
Keywords: Weil complex, semi-infinite cohomology, superconformal algebra, Kähler geometry
Mot clés : complexe de Weil, cohomologie semi-infinie, algèbre superconforme, géométrie kählérienne
@article{AIF_2001__51_3_745_0, author = {Poletaeva, Elena}, title = {Semi-infinite cohomology and superconformal algebras}, journal = {Annales de l'Institut Fourier}, pages = {745--768}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {3}, year = {2001}, doi = {10.5802/aif.1835}, mrnumber = {1838464}, zbl = {1067.17012}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1835/} }
TY - JOUR AU - Poletaeva, Elena TI - Semi-infinite cohomology and superconformal algebras JO - Annales de l'Institut Fourier PY - 2001 SP - 745 EP - 768 VL - 51 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1835/ DO - 10.5802/aif.1835 LA - en ID - AIF_2001__51_3_745_0 ER -
%0 Journal Article %A Poletaeva, Elena %T Semi-infinite cohomology and superconformal algebras %J Annales de l'Institut Fourier %D 2001 %P 745-768 %V 51 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1835/ %R 10.5802/aif.1835 %G en %F AIF_2001__51_3_745_0
Poletaeva, Elena. Semi-infinite cohomology and superconformal algebras. Annales de l'Institut Fourier, Tome 51 (2001) no. 3, pp. 745-768. doi : 10.5802/aif.1835. http://archive.numdam.org/articles/10.5802/aif.1835/
[Ad] Dual strings with colour symmetry, Nucl. Phys., Volume B111 (1976), pp. 77-110 | DOI
[Ak] Some cohomology operators in field theory, Proceedings of the conference on Quantum topology (Manhattan, KS, 1993) (1994), pp. 1-19 | Zbl
[Fe] Private communication
[FF] Semi-infinite Weil Complex and the Virasoro Algebra, Commun. Math. Phys., Volume 137 (1991), pp. 617-639 | DOI | MR | Zbl
[FF] Erratum "Semi-infinite Weil Complex and the Virasoro Algebra", Commun. Math. Phys., Volume 147 (1992), pp. 647-648 | DOI | MR | Zbl
[FGZ] Semi-infinite cohomology and string theory, Proc. Natl. Acad. Sci. U.S.A., Volume 83 (1986), pp. 8442-8446 | DOI | MR | Zbl
[FST] Equivalence between chain categories of representations of affine and superconformal algebras, J. Math. Phys., Volume 39 (1998) no. 7, pp. 3865-3905 | DOI | MR | Zbl
[Fu] Cohomology of infinite-dimensional Lie algebras, Consultants Bureau, New York and London, 1986 | MR | Zbl
[G] Two-dimensional topological gravity and equivariant cohomology, Commun. Math. Phys., Volume 163 (1994) no. 3, pp. 473-489 | DOI | MR | Zbl
[GH] Principles of algebraic geometry, Wiley-Interscience Publ., New York, 1978 | MR | Zbl
[KL] On Classification of Superconformal Algebras, Strings-88 (1989), pp. 77-106 | Zbl
[P1] Semi-infinite Weil complex and superconformal algebra I (Preprint MPI 97-78)
[P1] Semi-infinite Weil complex and superconformal algebras II (Preprint MPI 97-79)
[P2] Superconformal algebras and Lie superalgebras of the Hodge theory (Preprint MPI, p. 99-136) | MR | Zbl
[P3] Semi-infinite cohomology and superconformal algebras, Comptes Rendus de l'Académie des Sciences, Série I, Volume t. 326 (1998), pp. 533-538 | MR | Zbl
Cité par Sources :