In this paper we describe a -dimensional generalization of the Euclidean algorithm which stems from the dynamics of -interval exchange transformations. We investigate various diophantine properties of the algorithm including the quality of simultaneous approximations. We show it verifies the following Lagrange type theorem: the algorithm is eventually periodic if and only if the parameters lie in the same quadratic extension of
Dans cet article nous décrivons une généralisation à la dimension de l’ algorithme d’Euclide, qui provient de la dynamique des échanges de intervalles. Nous examinons diverses propriétés diophantiennes de cet algorithme, en particulier la qualité de l’approximation simultanée. Nous montrons qu’il vérifie un théorème de type Lagrange : l’algorithme est finalement périodique si et seulement si les paramètres sont dans la même extension quadratique de .
Keywords: Generalized continued fraction, interval exchange transformations
Mot clés : fractions continues généralisées, échanges d'intervalles
@article{AIF_2001__51_4_861_0, author = {Ferenczi, S\'ebastien and Holton, Charles and Zamboni, Luca Q.}, title = {Structure of three interval exchange transformations {I:} an arithmetic study}, journal = {Annales de l'Institut Fourier}, pages = {861--901}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {4}, year = {2001}, doi = {10.5802/aif.1839}, mrnumber = {1849209}, zbl = {1029.11036}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1839/} }
TY - JOUR AU - Ferenczi, Sébastien AU - Holton, Charles AU - Zamboni, Luca Q. TI - Structure of three interval exchange transformations I: an arithmetic study JO - Annales de l'Institut Fourier PY - 2001 SP - 861 EP - 901 VL - 51 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1839/ DO - 10.5802/aif.1839 LA - en ID - AIF_2001__51_4_861_0 ER -
%0 Journal Article %A Ferenczi, Sébastien %A Holton, Charles %A Zamboni, Luca Q. %T Structure of three interval exchange transformations I: an arithmetic study %J Annales de l'Institut Fourier %D 2001 %P 861-901 %V 51 %N 4 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1839/ %R 10.5802/aif.1839 %G en %F AIF_2001__51_4_861_0
Ferenczi, Sébastien; Holton, Charles; Zamboni, Luca Q. Structure of three interval exchange transformations I: an arithmetic study. Annales de l'Institut Fourier, Volume 51 (2001) no. 4, pp. 861-901. doi : 10.5802/aif.1839. http://archive.numdam.org/articles/10.5802/aif.1839/
[1] The visits to zero of some deterministic random walks, Proc. London Math. Soc., Volume 44 (1982) no. 3, pp. 535-553 | DOI | MR | Zbl
[2] A-graded algebras and continued fractions, Comm. Pure Applied Math., Volume XLII (1989), pp. 993-1000 | DOI | MR | Zbl
[3] Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore (in French), Bull. Soc. Math. France, Volume 116 (1988) no. 4, pp. 489-500 | Numdam | MR | Zbl
[4] Discrete planes, -actions, Jacobi-Perron algorithm and substitutions (1999) (Preprint)
[5] Représentation géométrique de suites de complexité , Bull. Soc. Math. France, Volume 119 (1991) no. 2, pp. 199-215 | Numdam | MR | Zbl
[6] The Jacobi-Perron algorithm; its theory and applications, Lecture Notes in Mathematics, no 207, Springer-Verlag, 1971 | MR | Zbl
[7] Tilings and rotations: a two-dimensional generalization of Sturmian sequences, Discrete Math., Volume 223 (2000), pp. 27-53 | DOI | MR | Zbl
[8] An extension of Lagrange's theorem to interval exchange transformations over quadratic fields, J. Anal. Math., Volume 72 (1997), pp. 21-44 | DOI | MR | Zbl
[9] Multi-dimensional continued fraction algorithms, Math. Centre Tracts, Amsterdam, Volume 145 (1981) | MR | Zbl
[10] On simultaneous diophantine approximation in the vector space , J. Number Theory, Volume 82 (2000), pp. 12-24 | DOI | MR | Zbl
[11] On real quadratic number fields and simultaneous diophantine approximation, Monats. Math., Volume 128 (1999), pp. 201-209 | DOI | MR | Zbl
[12] Imbalances in Arnoux-Rauzy sequences, Ann. Inst. Fourier, Volume 50 (2000) no. 4, pp. 1265-1276 | DOI | Numdam | MR | Zbl
[13] Propriétés combinatoires, ergodiques et arithmétiques de la substitution de tribonacci, J. Théorie des Nombres de Bordeaux (2001) | Numdam | MR | Zbl
[14] Sequences with minimal block growth, Math. Systems Theory, Volume 7 (1972) no. 2, pp. 138-153 | DOI | MR | Zbl
[15] A family of counterexamples in ergodic theory, Israël J. Math., Volume 44 (1983) no. 2, pp. 160-188 | DOI | MR | Zbl
[16] Structure of three-interval exchange transformations II: a combinatorial description of the trajectories (2001) (Preprint, 32pp.) | MR | Zbl
[17] Structure of three-interval exchange transformations III: ergodic and spectral properties (2001) (Preprint, 29 pp.) | MR | Zbl
[18] On periodic sequences for algebraic numbers (1999) (, http://front.math.ucdavis.edu/math.NT/9906016) | Zbl
[19] A characterization of real quadratic numbers by diophantine algorithms, Tokyo J. Math., Volume 14 (1991) no. 2, pp. 251-267 | DOI | MR | Zbl
[20] An introduction to the theory of numbers, Oxford University Press | MR | Zbl
[21] Letter to C.D.J. Jacobi, J. reine. angew Math., Volume 40 (1839) no. 286
[22] Über eine besondere Art der Kettenbruchentwicklung reeller Grössen, Acta Math., Volume 12 (1889), pp. 367-405 | DOI | JFM
[23] Approximations in ergodic theory, Usp. Math. Nauk., Volume 22 (1967) no. 5, pp. 81-106 | MR | Zbl
[23] Approximations in ergodic theory, Russian Math. Surveys, Volume 22 (1967) no. 5, pp. 76-102 | MR | Zbl
[24] Sur une représentation géométrique du développement en fraction continue ordinaire, Nouv. Ann. Math., Volume 15, pp. 321-331 | JFM | Numdam
[25] La périodicité des fractions continues multidimensionnelles, C.R. Acad. Sci. Paris, Série I, Volume 319 (1994), pp. 777-780 | MR | Zbl
[26] A new class of continued fraction expansions, Acta Arith., Volume 57 (1991), pp. 1-39 | MR | Zbl
[27] Sur la solution des problèmes indéterminés du second degré, Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, Volume 23 (1769)
[28] Ein Kriterium für algebraishcen Zahlen, Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen Mathematisch-physikalische Klasse, pp. 293-315
[29] Über periodische Approximationen algebraischer Zahlen, Acta Math., Volume 26, pp. 333-351 | DOI | JFM
[30] Symbolic dynamics, Amer. J. Math., Volume 60 (1938), pp. 815-866 | DOI | JFM | MR
[31] Symbolic dynamics II: Sturmian sequences, Amer. J. Math., Volume 62 (1940), pp. 1-42 | DOI | MR | Zbl
[32] Die Lehre von den Kettenbrüchen (in German), Teubner Verlag, 1929 | JFM
[33] Une généralization du développement en fraction continue, Séminaire de Théorie des Nombres, Paris (1975-1977) | Numdam
[34] Échanges d'intervalles et transformations induites, Acta Arith., Volume 34 (1979), pp. 315-328 | MR | Zbl
[35] Nombres algébriques et substitutions, Bull. Soc. Math. France, Volume 110 (1982), pp. 147-178 | Numdam | MR | Zbl
[36] A generalization of Sturmian sequences; combinatorial properties and transcendence, Acta Arith., Volume 95 (2000) no. 2, pp. 167-184 | MR | Zbl
[37] The metrical theory of Jacobi-Perron algorithm, Lecture Notes in Mathematics, 334, Springer-Verlag, Berlin, 1973 | MR | Zbl
[38] Ergodic Theory of Fibred Systems and Metric Number Theory (1995), pp. 289 pp. | Zbl
[39] Multidimensional continued fractions, Ann. Univ. Sci. Budapest Sect. Math., Volume 13 (1970), pp. 113-140 | MR | Zbl
[40] Interval exchange transformations, J. Anal. Math., Volume 33 (1978), pp. 222-278 | DOI | MR | Zbl
[41] Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982) no. 1, pp. 201-242 | DOI | MR | Zbl
[42] The metric theory of interval exchange transformations I, II, III, Amer. J. Math., Volume 106 (1984), pp. 1331-1421 | DOI | MR | Zbl
[43] Frequencies of factors in Arnoux-Rauzy sequences, Acta Arith., Volume 96 (2001) no. 3, pp. 261-278 | DOI | MR | Zbl
[44] Une généralisation du théorème de Lagrange sur le développement en fraction continue, C.R. Acad. Sci. Paris, Série I, Volume 327 (1998), pp. 527-530 | MR | Zbl
Cited by Sources: