We construct for a real algebraic variety (or more generally for a scheme essentially of finite type over a field of characteristic ) complexes of algebraically and - algebraically constructible chains. We study their functoriality and compute their homologies for affine and projective spaces. Then we show that the lagrangian algebraically constructible cycles of the cotangent bundle are exactly the characteristic cycles of the algebraically constructible functions.
On construit pour une variété algébrique réelle (plus généralement, pour un schéma essentiellement de type fini sur un corps de caractéristique ) des complexes de chaînes algébriquement constructibles et -algébriquement constructibles, dont on étudie la fonctorialité et dont on calcule l’homologie pour les espaces affines et projectifs. Puis on montre que les cycles lagrangiens algébriquement constructibles du fibré cotangent sont exactement les cycles caractéristiques des fonctions algébriquement constructibles.
Keywords: algebraically constructible, homology, characteristic cycle
Mot clés : algébriquement constructible, homologie, cycle caractéristique
@article{AIF_2001__51_4_939_0, author = {Pennaneac'h, H\'el\`ene}, title = {Algebraically constructible chains}, journal = {Annales de l'Institut Fourier}, pages = {939--994}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {4}, year = {2001}, doi = {10.5802/aif.1841}, mrnumber = {1849211}, zbl = {1036.14029}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1841/} }
TY - JOUR AU - Pennaneac'h, Hélène TI - Algebraically constructible chains JO - Annales de l'Institut Fourier PY - 2001 SP - 939 EP - 994 VL - 51 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1841/ DO - 10.5802/aif.1841 LA - en ID - AIF_2001__51_4_939_0 ER -
Pennaneac'h, Hélène. Algebraically constructible chains. Annales de l'Institut Fourier, Volume 51 (2001) no. 4, pp. 939-994. doi : 10.5802/aif.1841. http://archive.numdam.org/articles/10.5802/aif.1841/
[B] Un critère pour reconnaître les fonctions algébriquement constructibles, J. reine angew. Math., Volume 526 (2000), pp. 61-88 | DOI | MR | Zbl
[BB] On the description of the reduced Witt ring, J. Alg., Volume 52 (1978), pp. 328-346 | DOI | MR | Zbl
[BCR] Géométrie algébrique réelle, Ergebnisse der Math., 3 Folge, Vol. 12, Springer, 1987 | MR | Zbl
[DM] On quadratic forms whose total signature is zero mod , Invent. Math., Volume 133 (1998) no. 2, pp. 243-278 | DOI | MR | Zbl
[G] Topological stability of smooth mappings, Lecture Notes in Mathematics, Vol. 552, Springer-Verlag, Berlin-New York, 1976 | MR | Zbl
[Ha] Algebraic Geometry, Graduate Texts in Math., Springer Verlag, 1977 | MR | Zbl
[KnS] Einführung in die reelle Algebra, Vieweg Studium: Aufbaukurs Mathematik, 63, Vieweg und Sohn, Braunschweig, 1989 | MR | Zbl
[KS] Sheaves on manifolds, Springer-Verlag, Berlin, 1990 | MR | Zbl
[Ku] Kähler Differentials, Advanced Lectures in Math., Friedr. Vieweg and Sohn, Braunschweig, 1986 | MR | Zbl
[MP] Algebraically constructible functions, Ann. Scient. École Norm. Sup. (4), Volume 30 (1997), pp. 527-552 | Numdam | MR | Zbl
[R] Chow groups with coefficients, Docu. Math., Volume 1 (1996), pp. 319-383 | MR | Zbl
[S] Wittringhomologie Thesis University of Regensburg (available on the web page of M. Rost), http://www.math.ohio-state.edu/~rost/papers.html
[Sch] Purity theorems for real spectra and applications, Real analytic and algebraic geometry (Trento, 1992) (1995), pp. 229-250 | Zbl
[SV] Characteristic cycles of constructible sheaves, Invent. Math., Volume 124 (1996), pp. 451-502 | DOI | MR | Zbl
[ZS] Commutative Algebra, van Nostrand, Princeton-London-Toronto, 1958 | MR | Zbl
Cited by Sources: