Nous explorons la question de détermination de l’image des représentations galoisiennes modulaires -adiques sans multiplication complexe et montrons que pour un ensemble “générique” de formes modulaires -adiques (formes propres normalisées sans multiplication complexe), elles ont toutes une image contenant .
We explore the question of how big the image of a Galois representation attached to a -adic modular form with no complex multiplication is and show that for a “generic” set of -adic modular forms (normalized, ordinary eigenforms with no complex multiplication), all have a large image.
Keywords: modular form, $p$-adic family, Galois representation, $p$-adic modular form
Mot clés : forme modulaire, famille $p$-adique, représentation galoisienne, forme modulaire $p$-adique
@article{AIF_2002__52_2_351_0, author = {Fischman, Ami}, title = {On the image of $\Lambda $-adic {Galois} representations}, journal = {Annales de l'Institut Fourier}, pages = {351--378}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {2}, year = {2002}, doi = {10.5802/aif.1890}, mrnumber = {1906479}, zbl = {1020.11037}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1890/} }
TY - JOUR AU - Fischman, Ami TI - On the image of $\Lambda $-adic Galois representations JO - Annales de l'Institut Fourier PY - 2002 SP - 351 EP - 378 VL - 52 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1890/ DO - 10.5802/aif.1890 LA - en ID - AIF_2002__52_2_351_0 ER -
%0 Journal Article %A Fischman, Ami %T On the image of $\Lambda $-adic Galois representations %J Annales de l'Institut Fourier %D 2002 %P 351-378 %V 52 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1890/ %R 10.5802/aif.1890 %G en %F AIF_2002__52_2_351_0
Fischman, Ami. On the image of $\Lambda $-adic Galois representations. Annales de l'Institut Fourier, Tome 52 (2002) no. 2, pp. 351-378. doi : 10.5802/aif.1890. http://archive.numdam.org/articles/10.5802/aif.1890/
[DHI98] Discriminant of Hecke fields and twisted adjoint -values for , Invent. Math., Volume 134 (1998) no. 3, pp. 547-577 | DOI | MR | Zbl
[Eis95] Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995 | MR | Zbl
[FT93] Algebraic number theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[Gou92] On the ordinary Hecke algebra, J. Number Theory, Volume 41 (1992) no. 2, pp. 178-198 | DOI | MR | Zbl
[Hid00] Modular forms and Galois cohomology, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[Hid86a] Galois representations into attached to ordinary cusp forms, Invent. Math., Volume 85 (1986) no. 3, pp. 545-613 | DOI | MR | Zbl
[Hid86b] Hecke algebras for and , Séminaire de théorie des nombres, Paris 1984--85 (1986), pp. 131-163 | Zbl
[Hid86c] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4), Volume 19 (1986) no. 2, pp. 231-273 | Numdam | MR | Zbl
[Hid87] Galois representations and the theory of p-adic Hecke algebras, Sugaku, in Japanese, Volume 39 (1987), pp. 124-139 | Zbl
[Hid89] p-adic hecke algebras and galois representations, Sugaku Expositions 2, (English translation of Hid87), Volume 87 (1989) no. 1, pp. 75-102 | Zbl
[Hid93] Elementary theory of L-functions and Eisenstein series, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[Mom81] On the l-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., Volume 28 (1981) no. 1, pp. 89-109 | MR | Zbl
[MW86] On p-adic analytic families of Galois representations, Compositio Math., Volume 59 (1986) no. 2, pp. 231-264 | Numdam | MR | Zbl
[Rib85] On l-adic representations attached to modular forms II, Glasgow Math. J., Volume 27 (1985), pp. 185-194 | DOI | MR | Zbl
[Ser81] Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. (1981) no. 54, pp. 323-401 | Numdam | MR | Zbl
[Sha94] Basic algebraic geometry. 2, Schemes and complex manifolds. Translated from the Russian edition by Miles Reid, Springer-Verlag, Berlin, 1994 | MR | Zbl
[Shi71] Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Volume No. 11 (1971) | Zbl
Cité par Sources :