Pour un espace localement symétrique nous définissons une compactification que nous appelons “compactification géodésique”. Elle est construite en ajoutant des points limites dans à certaines géodésiques dans . La compactification géodésique apparaî t dans d’autres cas. Les constructions générales de Gromov permettent, dans le cas des espaces symétriques, d’identifier le bord de la compactification de Gromov avec . De plus se construit naturellement avec la théorie des groupes en utilisant l’immeuble de Tits. La compactification géodésique joue deux rôles fondamentaux dans l’analyse harmonique de l’espace localement symétrique : 1) c’est la compactification de Martin minimale pour les valeurs négatives du laplacien et 2) elle peut être utilisée pour paramétrer les valeurs propres du laplacien dans le spectre continu sur
For a locally symmetric space , we define a compactification which we call the “geodesic compactification”. It is constructed by adding limit points in to certain geodesics in . The geodesic compactification arises in other contexts. Two general constructions of Gromov for an ideal boundary of a Riemannian manifold give for locally symmetric spaces. Moreover, has a natural group theoretic construction using the Tits building. The geodesic compactification plays two fundamental roles in the harmonic analysis of the locally symmetric space:1) it is the minimal Martin compactification for negative eigenvalues of the Laplacian, and 2) it can be used to parameterize the eigenfunctions of the Laplacian in continuous spectrum on .
Keywords: compactifications, locally symmetric spaces, geodesics, arithmetic groups
Mot clés : compactifications, espaces localement symétriques, géodésiques, groupes arithmétiques
@article{AIF_2002__52_2_457_0, author = {Ji, Lizhen and Macpherson, Robert}, title = {Geometry of compactifications of locally symmetric spaces}, journal = {Annales de l'Institut Fourier}, pages = {457--559}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {2}, year = {2002}, doi = {10.5802/aif.1893}, mrnumber = {1906482}, zbl = {1017.53039}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1893/} }
TY - JOUR AU - Ji, Lizhen AU - Macpherson, Robert TI - Geometry of compactifications of locally symmetric spaces JO - Annales de l'Institut Fourier PY - 2002 SP - 457 EP - 559 VL - 52 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1893/ DO - 10.5802/aif.1893 LA - en ID - AIF_2002__52_2_457_0 ER -
%0 Journal Article %A Ji, Lizhen %A Macpherson, Robert %T Geometry of compactifications of locally symmetric spaces %J Annales de l'Institut Fourier %D 2002 %P 457-559 %V 52 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1893/ %R 10.5802/aif.1893 %G en %F AIF_2002__52_2_457_0
Ji, Lizhen; Macpherson, Robert. Geometry of compactifications of locally symmetric spaces. Annales de l'Institut Fourier, Tome 52 (2002) no. 2, pp. 457-559. doi : 10.5802/aif.1893. http://archive.numdam.org/articles/10.5802/aif.1893/
[AR1] A Trace Formula for Reductive Groups I, Duke Math. J., Volume 45 (1978), pp. 911-952 | DOI | MR | Zbl
[AR2] Eisenstein Series and the Trace Formula, Part 1, Proc. Symp. Pure Math., Volume 33 (1979), pp. 253-274 | MR | Zbl
[BGS] Manifolds of Nonpositive Curvature, Progress in Math., vol. 61, Birkhäuser, Boston, 1985 | MR | Zbl
[BH] Arithmetic Subgroups of Algebraic Groups, Ann. of Math., Volume 75 (1962), pp. 485-535 | DOI | Zbl
[BJ] Compactification of Locally Symmetric Spaces (2000) (Preprint)
[BO1] Introduction aux groupes arithmétiques, Hermann, Paris, 1969 | Zbl
[BO2] Some Metric Properties of Arithmetic Quotients of Symmetric Spaces and an Extension Theorem, J. Diff. Geom., Volume 6 (1972), pp. 543-560 | MR | Zbl
[BO3] Linear Algebraic Groups, Proc. Symp. Pure Math., Volume 9 (1969), pp. 3-19 | MR | Zbl
[BO4] Reduction theory for arithmetic groups, Proc. Symp. Pure Math., Volume 9 (1969), pp. 20-25 | MR | Zbl
[BR] Lectures on Potential Theory, Tata Institute of Fundamental Research (1967)
[BS] Corners and Arithmetic Groups, Comment. Math. Helv., Volume 48 (1973), pp. 436-491 | DOI | Zbl
[BT] Groupes réductifs, Publ. Math. IHES, Volume 27 (1965), pp. 55-151 | Numdam | Zbl
[DL] Pure Point Spectrum and Negative Curvature for Noncompact Manifolds, Duke Math. J., Volume 46 (1979), pp. 497-503 | DOI | MR | Zbl
[FR] Harmonic Analysis in Weighted -Spaces, Ann. Sci. École Norm. Sup., Volume 31 (1998), pp. 181-279 | Numdam | MR | Zbl
[FRE] Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, Volume 22 (1906), pp. 1-74 | DOI | JFM
[FU] A Poisson Formula for Semi-simple Lie Groups, Ann. Math., Volume 72 (1963), pp. 335-386 | DOI | MR | Zbl
[GHM] Weighted Cohomology, Invent. Math., Volume 116 (1994), pp. 139-213 | DOI | MR | Zbl
[GJT] Compactifications of Symmetric Spaces, Progress in Math., vol. 156, Birkhäuser, Boston, 1998 | MR | Zbl
[GR] Fundamental Domains for Lattices in -Rank 1 Semi-simple Lie Groups, Ann. of Math., Volume 92 (1970), pp. 279-326 | DOI | MR | Zbl
[GR1] Structure métriques pour les variétés riemanniennes, CEDIC, Paris, 1981 | MR | Zbl
[GR2] Groups of Polynomial Growth and Expanding Groups, IHES, Volume 53 (1981), pp. 53-73 | Numdam | MR | Zbl
[GR3] Asymptotic Invariants of Infinite Groups, Geometric Group Theory (Sussex, 1991), Volume vol. 2 (1993), pp. 1-295
[GT] Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, 224, Springer Verlag, New York, 1977 | MR | Zbl
[GU] Sojourn ptmr and Asymptotic Properties of the Scattering matrix, RIMS Kyoto Univ., Volume 12 (1977), pp. 69-88 | DOI | MR | Zbl
[HA1] Geometry of Quotient Spaces of by Congruence Subgroups, Math. Ann., Volume 293 (1992), pp. 443-467 | DOI | MR | Zbl
[HA2] Collapsing of Quotient Spaces of $\hbox{SO}(n)\backslash \hbox{SL}(n,\Bbb R) at Infinity, J. Math. Soc. Japan, Volume 47 (1995), pp. 193-225 | DOI | MR | Zbl
[HAD] Les surfaces à courbures opposées et leurs lignes géodésiques, Collected Works, Volume 2, pp. 729-775
[HC] Automorphic Forms on Semisimple Lie Groups, Lecture Notes in Math., vol. 62, Springer-Verlag, 1968 | MR | Zbl
[HEJ] The Selberg Trace Formula for II, Lecture Notes in Math., vol. 1001, Springer-Verlag, 1983 | MR | Zbl
[HEL] Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Math., vol. 80, Academic Press, 1978 | MR | Zbl
[HZ] Boundary Cohomology of Shimura Varieties II. Hodge Theory at the Boundary, Invent. Math., Volume 116 (1994), pp. 243-307 | MR | Zbl
[J1] Compactifications of Symmetric and Locally Symmetric Spaces, Geometric Complex Analysis (1996), pp. 297-308 | Zbl
[J2] Metric Compactifications of Locally Symmetric Spaces, Intern. J. of Math., Volume 9 (1998), pp. 465-491 | DOI | MR | Zbl
[JZ] Scattering matrices and scattering geodesics, Ann. Sci. École Norm. Sup., Volume 34 (2001), pp. 441-469 | Numdam | MR | Zbl
[KA] The Geometry of Geodesics and the Eigenfunctions of the Beltrami-Laplace Operator on Symmetric Spaces, Trans. Moscow Math. Soc., Volume 14 (1965), pp. 51-199 | MR | Zbl
[KE1] Wave Propagation, ICM 1994 in Zürich (1994), pp. 106-119 | Zbl
[KE2] General Topology, Graduate Texts in Math., vol. 27, Springer, 1955 | Zbl
[KT] Fine Convergence and Parabolic Convergence for the Helmholtz Equation and the Heat Equation, Illinois J. Math., Volume 27 (1983), pp. 77-93 | MR | Zbl
[KU] Topology, Academic Press, 1966 | MR | Zbl
[LA] On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Math., vol. 544, Springer-Verlag, 1976 | MR | Zbl
[LE] Geodesic Rays in Locally Symmetric Spaces, Diff. Geom. Appl., Volume 6 (1996), pp. 55-65 | DOI | MR | Zbl
[MA] Minimal Positive Harmonic Functions, Trans. Amer. Math. Soc., Volume 49 (1941), pp. 137-172 | DOI | JFM | MR | Zbl
[ME] Geometric Scattering Theory, Cambridge University Press, New York, 1995 | MR | Zbl
[MU] The Trace Class Conjecture in the Theory of Automorphic Forms, Ann. of Math., Volume 130 (1989), pp. 473-529 | DOI | MR | Zbl
[MW] Spectral Decomposition and Eisenstein Series, Cambridge University Press, 1995 | MR | Zbl
[OW1] The Selberg Trace Formula II: Partition, Reduction, Truncation, Pacific J. Math., Volume 106 (1983), pp. 307-496 | MR | Zbl
[OW2] The Theory of Eisenstein Systems, Pure Appl. Math., vol. 99, Academic Press, 1981 | MR | Zbl
[SA] Tilings and Finite Energy Retractions of Locally Symmetric Spaces, Comment. Math. Helv., Volume 72 (1997), pp. 167-202 | DOI | MR | Zbl
[SA1] On Representations and Compactifications of Symmetric Spaces, Ann. of Math., Volume 71 (1960), pp. 77-110 | DOI | MR | Zbl
[SA2] On Compactifications of the Quotient Spaces for Arithmetically Defined Discontinuous Groups, Ann. of Math., Volume 72 (1960), pp. 555-580 | DOI | MR | Zbl
[SE1] Recent Developments in the Theory of Discontinuous Groups of Motions of Symmetric Spaces (Lecture Notes in Math.), Volume vol. 118 (1968), pp. 99-120 | Zbl
[SE2] Harmonic Analysis and Discontinuous Groups in Weakly Riemannian Symmetric Spaces with Applications to Dirichlet Series, J. Ind. Math. Soc., Volume 20 (1956), pp. 47-87 | MR | Zbl
[SI] Symplectic Geometry, Academic Press, 1964 | MR | Zbl
[SU1] Disjoint Spheres, Approximation by Imaginary Quadratic Numbers, and the Logarithm Law for Geodesics, Acta Math., Volume 149 (1982), pp. 215-236 | DOI | MR | Zbl
[SU2] Related Aspects of Positivity in Riemannian geometry, J. Diff. Geom., Volume 25 (1987), pp. 327-351 | MR | Zbl
[TI1] On Buildings and Their Applications, Proc. ICM, Vancouver (1974), pp. 209-220 | Zbl
[TI2] Buildings of Spherical Type and BN-Pairs, Lecture Notes in Math., vol. 386, Springer-Verlag, 1974 | MR | Zbl
[WI] Scattering States and Wave Operators in the Abstract Theory of Scattering, J. Func. Anal., Volume 12 (1973), pp. 257-274 | DOI | MR | Zbl
[ZI] Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984 | MR | Zbl
[ZU1] Cohomology of Warped Products and Arithmetic Groups, Invent. Math., Volume 70 (1982), pp. 169-218 | DOI | MR | Zbl
[ZU2] Satake Compactifications, Comment. Math. Helv., Volume 58 (1983), pp. 312-343 | DOI | MR | Zbl
Cité par Sources :