Dans cet article on établit une formule pour la catégorie rationnelle de certains espaces qui généralise des travaux précédents. Cette formule est donnée par rapport au modèle de Sullivan de l'espace considéré.
In this paper we find a formula for the rational LS-category of certain elliptic spaces which generalizes or complements previous work of the subject. This formula is given in terms of the minimal model of the space.
Keywords: LS-category, minimal model
Mot clés : LS-catégorie, modèle minimal
@article{AIF_2002__52_5_1585_0, author = {Lechuga, Luis and Murillo, Aniceto}, title = {A formula for the rational {LS-category} of certain spaces}, journal = {Annales de l'Institut Fourier}, pages = {1585--1590}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {5}, year = {2002}, doi = {10.5802/aif.1926}, mrnumber = {1935558}, zbl = {1011.55002}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1926/} }
TY - JOUR AU - Lechuga, Luis AU - Murillo, Aniceto TI - A formula for the rational LS-category of certain spaces JO - Annales de l'Institut Fourier PY - 2002 SP - 1585 EP - 1590 VL - 52 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1926/ DO - 10.5802/aif.1926 LA - en ID - AIF_2002__52_5_1585_0 ER -
%0 Journal Article %A Lechuga, Luis %A Murillo, Aniceto %T A formula for the rational LS-category of certain spaces %J Annales de l'Institut Fourier %D 2002 %P 1585-1590 %V 52 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1926/ %R 10.5802/aif.1926 %G en %F AIF_2002__52_5_1585_0
Lechuga, Luis; Murillo, Aniceto. A formula for the rational LS-category of certain spaces. Annales de l'Institut Fourier, Tome 52 (2002) no. 5, pp. 1585-1590. doi : 10.5802/aif.1926. http://archive.numdam.org/articles/10.5802/aif.1926/
[1] Explicit formulae for the rational -category of some homogeneous spaces (2001) (Preprint) | Zbl
[2] Rational -category and its applications, Transactions of the American Mathematical Society, Volume 273 (1982), pp. 1-38 | MR | Zbl
[3] The rational -category of products and Poincaré duality complexes, Topology, Volume 37 (1998) no. 4, pp. 749-756 | DOI | MR | Zbl
[4] Rational Homotopy Theory, G.T.M, 205, Springer, 2000 | MR | Zbl
[5] Estimating the rational -category of elliptic spaces, Proceedings of the American Mathematical Society, Volume 129 (2000) no. 6, pp. 1833-1842 | DOI | MR | Zbl
[6] -category and homogeneous spaces, Journal of Pure and Applied Algebra, Volume 65 (1990), pp. 45-56 | DOI | MR | Zbl
[7] The fundamental class of a rational space, the graph coloring problem and other classical decision problems, Bull. of the Belg. Math. Soc, Volume 8 (2001), pp. 451-467 | MR | Zbl
[8] The top cohomology class of certain spaces, Journal of Pure and Applied Algebra, Volume 84 (1993), pp. 209-214 | DOI | MR | Zbl
[9] The top cohomology class of classical compact homogeneous spaces, Algebras, Groups and Geometries, Volume 16 (1999), pp. 531-550 | MR | Zbl
Cité par Sources :