Let be an algebraic variety defined over a field of characteristic , and let be an -torsor under a torus. We compute the Brauer group of . In the case of a number field we deduce results concerning the arithmetic of .
Soit une variété algébrique définie sur un corps de caractéristique zéro . Soit un -torseur sous un tore. Nous calculons le groupe de Brauer de et nous en déduisons des conséquences arithmétiques pour quand est un corps de nombres.
Keywords: Brauer group, Hasse principle, universal torsor
Mot clés : groupe de Brauer, principe de Hasse, torseur universel
@article{AIF_2003__53_7_1987_0, author = {Harari, David and Skorobogatov, Alexei N.}, title = {The {Brauer} group of torsors and its arithmetic applications}, journal = {Annales de l'Institut Fourier}, pages = {1987--2019}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {7}, year = {2003}, doi = {10.5802/aif.1998}, mrnumber = {2044165}, zbl = {02093464}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1998/} }
TY - JOUR AU - Harari, David AU - Skorobogatov, Alexei N. TI - The Brauer group of torsors and its arithmetic applications JO - Annales de l'Institut Fourier PY - 2003 SP - 1987 EP - 2019 VL - 53 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1998/ DO - 10.5802/aif.1998 LA - en ID - AIF_2003__53_7_1987_0 ER -
%0 Journal Article %A Harari, David %A Skorobogatov, Alexei N. %T The Brauer group of torsors and its arithmetic applications %J Annales de l'Institut Fourier %D 2003 %P 1987-2019 %V 53 %N 7 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1998/ %R 10.5802/aif.1998 %G en %F AIF_2003__53_7_1987_0
Harari, David; Skorobogatov, Alexei N. The Brauer group of torsors and its arithmetic applications. Annales de l'Institut Fourier, Volume 53 (2003) no. 7, pp. 1987-2019. doi : 10.5802/aif.1998. http://archive.numdam.org/articles/10.5802/aif.1998/
[CF] Algebraic number theory (1967)
[CS00] Descent on fibrations over revisited, Math. Proc. Camb. Phil. Soc, Volume 128 (2000), pp. 383-393 | DOI | MR | Zbl
[CS77] La -équivalence sur les tores., Ann. Sci. École Norm. Sup., Volume 10 (1977), pp. 175-230 | Numdam | MR | Zbl
[CS87a] La descente sur les variétés rationnelles, II, Duke Math. J., Volume 54 (1987), pp. 375-492 | DOI | MR | Zbl
[CS87b] Principal homogeneous spaces under flasque tori; applications, J. Algebra, Volume 106 (1987), pp. 148-205 | DOI | MR | Zbl
[CSS87] Intersections of two quadrics and Châtelet surfaces. I., J. reine angew. Math., Volume 373 (1987), pp. 37-107 | MR | Zbl
[CSS87] Intersections of two quadrics and Châtelet surfaces. II., J. Reine Angew. Math., Volume 374 (1987), pp. 72-168 | MR | Zbl
[CT] Surfaces rationnelles fibrées en coniques de degré 4, Séminaire de Théorie des Nombres, Paris 1988-1989 (Progr. Math.), Volume 91 (1990), pp. 43-55 | Zbl
[EGA4] Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas (EGA), Publ. Math. IHES (1964-1967) | Numdam | Zbl
[G] Le groupe de Brauer. III. Exemples et compléments., Dix exposés sur la cohomologie des schémas (1968) | Zbl
[GHS] Families of rationally connected varieties, J. Amer. Math. Soc, Volume 16 (2003), pp. 57-67 | DOI | MR | Zbl
[H94] Méthode des fibrations et obstruction de Manin, Duke Math. J, Volume 75 (1994), pp. 221-260 | DOI | MR | Zbl
[H97] Flèches de spécialisation en cohomologie étale et applications arithmétiques, Bull. Soc. Math. France, Volume 125 (1997), pp. 143-166 | Numdam | MR | Zbl
[KST] Del Pezzo surfaces of degree four, Mém. Soc. Math. France, Volume 37 (1989) | Numdam | MR | Zbl
[M] Étale Cohomology, 33, Princeton Univ. Press, Princeton, 1980 | MR | Zbl
[S01] Torsors and rational points, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[S90] Arithmetic on certain quadric bundles of relative dimension. I., J. reine angew. Math, Volume 407 (1990), pp. 57-74 | DOI | MR | Zbl
[S96] Descent on fibrations over the projective line, Amer. J. Math, Volume 118 (1996), pp. 905-923 | DOI | MR | Zbl
[SD] Rational points on some pencils of conics with 6 singular fibres, Ann. Fac. Sci. Toulouse, Volume 8 (1999), pp. 331-341 | DOI | Numdam | MR | Zbl
[SS] Weak approximation for surfaces defined by two quadratic forms, Duke Math. J, Volume 63 (1991), pp. 517-536 | MR | Zbl
[V] Algebraic groups and their birational invariants, Translations of Mathematical Monographs, 179, Amer. Math. Soc., Providence, 1998 | MR | Zbl
Cited by Sources: