Cet article concerne les flots projectivement Anosov, dont les feuilletages stable et instable et sont lisses, sur une variété de Seifert . Nous prouvons que si l’un des feuilletages ou contient une feuille compacte, alors le flot se décompose en union finie de modèles définis sur et ayant pour bord les feuilles compactes. La variété est donc homeomorphe au tore . Dans la preuve, nous obtenons également un théorème qui classifie les feuilletages de codimension un sur les variétés de Seifert ayant des feuilles compactes qui sont des tores incompressibles.
This paper concerns projectively Anosov flows with smooth stable and unstable foliations and on a Seifert manifold . We show that if the foliation or contains a compact leaf, then the flow is decomposed into a finite union of models which are defined on and bounded by compact leaves, and therefore the manifold is homeomorphic to the 3-torus. In the proof, we also obtain a theorem which classifies codimension one foliations on Seifert manifolds with compact leaves which are incompressible tori.
Keywords: projectively Anosov flows, stable foliations, bi-contact structures
Mot clés : flots projectivement Anosov, feuilletages stables, structures de bi-contact
@article{AIF_2004__54_2_481_0, author = {Noda, Takeo}, title = {Regular projectively {Anosov} flows with compact leaves}, journal = {Annales de l'Institut Fourier}, pages = {481--497}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {2}, year = {2004}, doi = {10.5802/aif.2026}, zbl = {1058.57021}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2026/} }
TY - JOUR AU - Noda, Takeo TI - Regular projectively Anosov flows with compact leaves JO - Annales de l'Institut Fourier PY - 2004 SP - 481 EP - 497 VL - 54 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2026/ DO - 10.5802/aif.2026 LA - en ID - AIF_2004__54_2_481_0 ER -
%0 Journal Article %A Noda, Takeo %T Regular projectively Anosov flows with compact leaves %J Annales de l'Institut Fourier %D 2004 %P 481-497 %V 54 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2026/ %R 10.5802/aif.2026 %G en %F AIF_2004__54_2_481_0
Noda, Takeo. Regular projectively Anosov flows with compact leaves. Annales de l'Institut Fourier, Tome 54 (2004) no. 2, pp. 481-497. doi : 10.5802/aif.2026. http://archive.numdam.org/articles/10.5802/aif.2026/
[A] Classification of regular and non-degenerate projectively Anosov flows on three manifolds (Preprint) | Zbl
[Ba] Flots d'Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier, Volume 46 (1996) no. 5, pp. 1451-1517 | Numdam | MR | Zbl
[Br1] Essential laminations in Seifert-fibered spaces, Topology, Volume 32 (1993) no. 1, pp. 61-85 | MR | Zbl
[Br2] Essential laminations in Seifert-fibered spaces: boundary behavior, Topology Appl., Volume 95 (1999) no. 1, pp. 47-62 | MR | Zbl
[D] Sur les courbes définies par les équation différentielles à la surface du tore, J. de Math. (9), Volume 11 (1932), pp. 333-375 | JFM | Numdam
[EHN] Transverse foliations of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helv., Volume 56 (1981), pp. 638-660 | MR | Zbl
[ET] Confoliations, University Lecture Series 13, Amer. Math. Soc., 1998 | Zbl
[F] Anosov flows in 3-manifolds, Ann. of Math. (2), Volume 139 (1994), pp. 79-115 | MR | Zbl
[Gh1] Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier, Volume 42 (1992) no. 1-2, pp. 209-247 | Numdam | MR | Zbl
[Gh2] Rigidité différentiable des groupes fuchsiens, I.H.É.S. Publ. Math., Volume 78 (1993), pp. 163-185 | Numdam | MR | Zbl
[GO] Essential laminations in -manifolds, Ann. of Math. (2), Volume 130 (1989) no. 1, pp. 41-73 | MR | Zbl
[H] All compact orientable three manifolds admit total foliations, Memoirs Amer. Math. Soc., Volume 233 (1980) | Zbl
[J] Lectures on three-manifold topology, CBMS (Regional Conference Series in Mathematics 43) (1980) | MR | Zbl
[L] Feuilletages des variétés de dimension qui sont des fibrés en cercles, Comment. Math. Helv., Volume 53 (1978) no. 4, pp. 572-594 | MR | Zbl
[Ma] Foliations of Seifert fibered space over , Foliations (Tokyo, 1983) (Adv. Studies Pure Math.), Volume 5 (1985), pp. 325-339 | MR | Zbl
[Mi1] Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier, Volume 45 (1995) no. 5, pp. 1407-1421 | Numdam | MR | Zbl
[Mi2] Foliations and contact structures on 3-manifolds, Foliations: geometry and dynamics (Warsaw, 2000) (2002), pp. 75-125 | MR | Zbl
[Mi3] Projectively Anosov flows and bi-contact structures on (Preprint in preparation)
[MR] Relations de conjugaison et de cobordisme entre certains feuilletages, I.H.É.S. Publ. Math., Volume 43 (1974), pp. 142-168 | Numdam | MR | Zbl
[Nd] Projectively Anosov flows with differentiable (un)stable foliations, Ann. Inst. Fourier, Volume 50 (2000) no. 5, pp. 1617-1647 | Numdam | MR | Zbl
[NT] Regular projectively Anosov flows without compact leaves, Foliations: geometry and dynamics (Warsaw, 2000) (2002), pp. 403-419 | MR | Zbl
[Nv] Topology of foliations, Trudy Moskov. Mat. Ob., Volume 14 (1965), pp. 248-278 | MR | Zbl
[Nv] Topology of foliations, Amer. Math. Soc. (1967), pp. 286-304 | Zbl
[O] Seifert manifolds, Lecture Notes in Math., 291, Springer, 1972 | MR | Zbl
[Sc] The geometries of -manifolds, Bull. London Math. Soc., Volume 15 (1983), pp. 401-487 | MR | Zbl
[Sch] A generalization of a Poincaré-Bendixon theorem to closed two dimensional manifolds, Amer. J. Math., Volume 85 (1963), pp. 453-458 | MR | Zbl
[Ta] Topology of foliations : an introduction. Transl. from the 1976 Japanese edition., Translation of Mathematical Monographs, 97, Amer. Math. Soc., 1992 | MR | Zbl
[Th] Foliations of 3-manifolds which are circle bundles (1972) (Ph. D. Thesis, UC Berkeley)
[Ts] Regular projectively Anosov flows on the Seifert fibered spaces (Preprint)
Cité par Sources :