Regular projectively Anosov flows with compact leaves
[Flots projectivement Anosov réguliers avec des feuilles compactes]
Annales de l'Institut Fourier, Tome 54 (2004) no. 2, pp. 481-497.

Cet article concerne les flots projectivement Anosov, dont les feuilletages stable et instable s et u sont lisses, sur une variété de Seifert M. Nous prouvons que si l’un des feuilletages s ou u contient une feuille compacte, alors le flot φ t se décompose en union finie de modèles définis sur T 2 ×I et ayant pour bord les feuilles compactes. La variété M est donc homeomorphe au tore T 3 . Dans la preuve, nous obtenons également un théorème qui classifie les feuilletages de codimension un sur les variétés de Seifert ayant des feuilles compactes qui sont des tores incompressibles.

This paper concerns projectively Anosov flows φ t with smooth stable and unstable foliations s and u on a Seifert manifold M. We show that if the foliation s or u contains a compact leaf, then the flow φ t is decomposed into a finite union of models which are defined on T 2 ×I and bounded by compact leaves, and therefore the manifold M is homeomorphic to the 3-torus. In the proof, we also obtain a theorem which classifies codimension one foliations on Seifert manifolds with compact leaves which are incompressible tori.

DOI : 10.5802/aif.2026
Classification : 57R30, 37D30, 53C12, 53C15
Keywords: projectively Anosov flows, stable foliations, bi-contact structures
Mot clés : flots projectivement Anosov, feuilletages stables, structures de bi-contact
Noda, Takeo 1

1 University of Tokyo, Graduate School of Mathematical Sciences, 3-8-1 Komaba, Meguro-Ku, Tokyo 153-8914 (Japon)
@article{AIF_2004__54_2_481_0,
     author = {Noda, Takeo},
     title = {Regular projectively {Anosov} flows with compact leaves},
     journal = {Annales de l'Institut Fourier},
     pages = {481--497},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {2},
     year = {2004},
     doi = {10.5802/aif.2026},
     zbl = {1058.57021},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2026/}
}
TY  - JOUR
AU  - Noda, Takeo
TI  - Regular projectively Anosov flows with compact leaves
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 481
EP  - 497
VL  - 54
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2026/
DO  - 10.5802/aif.2026
LA  - en
ID  - AIF_2004__54_2_481_0
ER  - 
%0 Journal Article
%A Noda, Takeo
%T Regular projectively Anosov flows with compact leaves
%J Annales de l'Institut Fourier
%D 2004
%P 481-497
%V 54
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2026/
%R 10.5802/aif.2026
%G en
%F AIF_2004__54_2_481_0
Noda, Takeo. Regular projectively Anosov flows with compact leaves. Annales de l'Institut Fourier, Tome 54 (2004) no. 2, pp. 481-497. doi : 10.5802/aif.2026. http://archive.numdam.org/articles/10.5802/aif.2026/

[A] M. Asaoka Classification of regular and non-degenerate projectively Anosov flows on three manifolds (Preprint) | Zbl

[Ba] T. Barbot Flots d'Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier, Volume 46 (1996) no. 5, pp. 1451-1517 | Numdam | MR | Zbl

[Br1] M. Brittenham Essential laminations in Seifert-fibered spaces, Topology, Volume 32 (1993) no. 1, pp. 61-85 | MR | Zbl

[Br2] M. Brittenham Essential laminations in Seifert-fibered spaces: boundary behavior, Topology Appl., Volume 95 (1999) no. 1, pp. 47-62 | MR | Zbl

[D] A. Denjoy Sur les courbes définies par les équation différentielles à la surface du tore, J. de Math. (9), Volume 11 (1932), pp. 333-375 | JFM | Numdam

[EHN] D. Eisenbud; U. Hirsch; W. Neumann Transverse foliations of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helv., Volume 56 (1981), pp. 638-660 | MR | Zbl

[ET] Y. Eliashberg; W.P. Thurston Confoliations, University Lecture Series 13, Amer. Math. Soc., 1998 | Zbl

[F] S. Fenley Anosov flows in 3-manifolds, Ann. of Math. (2), Volume 139 (1994), pp. 79-115 | MR | Zbl

[Gh1] E. Ghys Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier, Volume 42 (1992) no. 1-2, pp. 209-247 | Numdam | MR | Zbl

[Gh2] E. Ghys Rigidité différentiable des groupes fuchsiens, I.H.É.S. Publ. Math., Volume 78 (1993), pp. 163-185 | Numdam | MR | Zbl

[GO] D. Gabai; U. Oertel Essential laminations in 3-manifolds, Ann. of Math. (2), Volume 130 (1989) no. 1, pp. 41-73 | MR | Zbl

[H] D. Hardorp All compact orientable three manifolds admit total foliations, Memoirs Amer. Math. Soc., Volume 233 (1980) | Zbl

[J] W. Jaco Lectures on three-manifold topology, CBMS (Regional Conference Series in Mathematics 43) (1980) | MR | Zbl

[L] G. Levitt Feuilletages des variétés de dimension 3 qui sont des fibrés en cercles, Comment. Math. Helv., Volume 53 (1978) no. 4, pp. 572-594 | MR | Zbl

[Ma] S. Matsumoto Foliations of Seifert fibered space over S 2 , Foliations (Tokyo, 1983) (Adv. Studies Pure Math.), Volume 5 (1985), pp. 325-339 | MR | Zbl

[Mi1] Y. Mitsumatsu Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier, Volume 45 (1995) no. 5, pp. 1407-1421 | Numdam | MR | Zbl

[Mi2] Y. Mitsumatsu Foliations and contact structures on 3-manifolds, Foliations: geometry and dynamics (Warsaw, 2000) (2002), pp. 75-125 | MR | Zbl

[Mi3] Y. Mitsumatsu Projectively Anosov flows and bi-contact structures on (Preprint in preparation)

[MR] R. Moussu; R. Roussarie Relations de conjugaison et de cobordisme entre certains feuilletages, I.H.É.S. Publ. Math., Volume 43 (1974), pp. 142-168 | Numdam | MR | Zbl

[Nd] T. Noda Projectively Anosov flows with differentiable (un)stable foliations, Ann. Inst. Fourier, Volume 50 (2000) no. 5, pp. 1617-1647 | Numdam | MR | Zbl

[NT] T. Noda; T. Tsuboi Regular projectively Anosov flows without compact leaves, Foliations: geometry and dynamics (Warsaw, 2000) (2002), pp. 403-419 | MR | Zbl

[Nv] S.P. Novikov Topology of foliations, Trudy Moskov. Mat. Ob., Volume 14 (1965), pp. 248-278 | MR | Zbl

[Nv] S.P. Novikov Topology of foliations, Amer. Math. Soc. (1967), pp. 286-304 | Zbl

[O] P. Orlik Seifert manifolds, Lecture Notes in Math., 291, Springer, 1972 | MR | Zbl

[Sc] P. Scott The geometries of 3-manifolds, Bull. London Math. Soc., Volume 15 (1983), pp. 401-487 | MR | Zbl

[Sch] A.J. Schwarz A generalization of a Poincaré-Bendixon theorem to closed two dimensional manifolds, Amer. J. Math., Volume 85 (1963), pp. 453-458 | MR | Zbl

[Ta] I. Tamura Topology of foliations : an introduction. Transl. from the 1976 Japanese edition., Translation of Mathematical Monographs, 97, Amer. Math. Soc., 1992 | MR | Zbl

[Th] W.P. Thurston Foliations of 3-manifolds which are circle bundles (1972) (Ph. D. Thesis, UC Berkeley)

[Ts] T. Tsuboi Regular projectively Anosov flows on the Seifert fibered spaces (Preprint)

Cité par Sources :