Quantization and Morita equivalence for constant Dirac structures on tori
Annales de l'Institut Fourier, Volume 54 (2004) no. 5, pp. 1565-1580.

We define a C * -algebraic quantization of constant Dirac structures on tori and prove that O(n,n|)-equivalent structures have Morita equivalent quantizations. This completes and extends from the Poisson case a theorem of Rieffel and Schwarz.

Nous définissons une quantification C * -algebrique des structures de Dirac constantes sur les tores, et nous démontrons que l’équivalence à O(n,n|) près des structures implique l’équivalence de Morita de leurs quantifications. Ce résultat complète et généralise un théorème de Rieffel et Schwarz, donné dans le cadre des structures de Poisson.

DOI: 10.5802/aif.2059
Classification: 46L65, 81S10
Tang, Xiang ; Weinstein, Alan 1

1 University of California, Department of Mathematics, Berkeley, CA 94720 (USA), University of California, Department of Mathematics Davis, CA 95616 (USA)
@article{AIF_2004__54_5_1565_0,
     author = {Tang, Xiang and Weinstein, Alan},
     title = {Quantization and {Morita} equivalence for constant {Dirac} structures on tori},
     journal = {Annales de l'Institut Fourier},
     pages = {1565--1580},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     doi = {10.5802/aif.2059},
     mrnumber = {2127858},
     zbl = {1068.46044},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2059/}
}
TY  - JOUR
AU  - Tang, Xiang
AU  - Weinstein, Alan
TI  - Quantization and Morita equivalence for constant Dirac structures on tori
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 1565
EP  - 1580
VL  - 54
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2059/
DO  - 10.5802/aif.2059
LA  - en
ID  - AIF_2004__54_5_1565_0
ER  - 
%0 Journal Article
%A Tang, Xiang
%A Weinstein, Alan
%T Quantization and Morita equivalence for constant Dirac structures on tori
%J Annales de l'Institut Fourier
%D 2004
%P 1565-1580
%V 54
%N 5
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2059/
%R 10.5802/aif.2059
%G en
%F AIF_2004__54_5_1565_0
Tang, Xiang; Weinstein, Alan. Quantization and Morita equivalence for constant Dirac structures on tori. Annales de l'Institut Fourier, Volume 54 (2004) no. 5, pp. 1565-1580. doi : 10.5802/aif.2059. http://archive.numdam.org/articles/10.5802/aif.2059/

[1] J. Block & E. Getzler, Quantization of foliations, Vol. 1, 2, World Scientific, 1992, p. 471-487 | Zbl

[2] A. Connes, Noncommutative Geometry, Academic Press, 1994 | MR | Zbl

[3] A. Connes, M.R. Douglas & A. Schwarz, Noncommutative Geometry and Matrix Theory: Compactification on Tori, J. High Energy Phys (1998) | MR | Zbl

[4] T.J. Courant, Dirac manifolds, Trans. A.M.S 319 (1990) p. 631-661 | MR | Zbl

[5] G. A. Elliott, On the K-theory of the C * algebras generated by a projective representation of a torsion-free discrete abelian group, Pitman, 1984, p. 157-184 | Zbl

[6] G.A. Elliott & H. Li, Morita equivalence of smooth noncommutative tori, e-print, math.OA/0311502 | Zbl

[7] H. Kajiura, Kronecker foliation, D1-branes and Morita equivalence of noncommutative two-tori, J. High Energy Phys 8 (2002) no.50 | MR | Zbl

[8] M. Kontsevich, Homological algebra of mirror symmetry., Vol. 1, 2, Birkhäuser, 1995, p. 120-139 | Zbl

[9] H. Li, Strong Morita equivalence of higher-dimensional noncommutative tori, e-print. To appear J. Reine Angew. Math., math.OA/0303123 | MR | Zbl

[10] F. Lizzi & R. Szabo, Noncommutative Geometry and String Duality, J. High Energy Phys., 1999

[11] P.S. Muhly, J.N. Renault & D.P. Williams, Equivalence and isomorphism for groupoid C * -algebras, J. Operator Theory 17 (1987) p. 3-22 | MR | Zbl

[12] S. Mukai, Duality between D(X) and D(X ^) with its application to Picard sheaves, Nagoya Math. J. 81 (1981) p. 153-175 | MR | Zbl

[13] M.A. Rieffel, Morita equivalence for C * -algebras and W * -algebras, J. Pure Appl. Algebra 5 (1974) p. 51-96 | MR | Zbl

[14] M.A. Rieffel, C * -algebras associated with irrational rotations, Pacific. J. Math. 93 (1981) p. 415-429 | MR | Zbl

[15] M.A. Rieffel, Projective modules over higher-dimensional non-commutative noncommutative tori, Canadian J. Math 40 (1988) p. 257-338 | MR | Zbl

[16] M.A. Rieffel, Deformation quantization of Heisenberg manifolds, Commun. Math. Phys 122 (1989) p. 531-562 | MR | Zbl

[17] M.A. Rieffel & A. Schwarz, Morita equivalence of multidimensional noncommutative tori, Int. J. Math 10 (1999) p. 289-299 | MR | Zbl

[18] A. Schwarz, Morita equivalence and duality, Lett. Math. Phys 50 (1999) p. 309-321 | MR | Zbl

[19] X. Tang, Deformation Quantization of Pseudo Symplectic (Poisson) Groupoids, e-print, math.QA/0405378 | Zbl

[20] A. Weinstein, Symplectic groupoids, geometric quantization, and irrational rotation algebras, MSRI Series, Springer, 1991, p. 281-290 | Zbl

[21] P. Xu, Noncommutative Poisson algebras, Amer. J. Math 116 (1994) p. 101-125 | MR | Zbl

Cited by Sources: