We define a -algebraic quantization of constant Dirac structures on tori and prove that -equivalent structures have Morita equivalent quantizations. This completes and extends from the Poisson case a theorem of Rieffel and Schwarz.
Nous définissons une quantification -algebrique des structures de Dirac constantes sur les tores, et nous démontrons que l’équivalence à près des structures implique l’équivalence de Morita de leurs quantifications. Ce résultat complète et généralise un théorème de Rieffel et Schwarz, donné dans le cadre des structures de Poisson.
@article{AIF_2004__54_5_1565_0, author = {Tang, Xiang and Weinstein, Alan}, title = {Quantization and {Morita} equivalence for constant {Dirac} structures on tori}, journal = {Annales de l'Institut Fourier}, pages = {1565--1580}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {5}, year = {2004}, doi = {10.5802/aif.2059}, mrnumber = {2127858}, zbl = {1068.46044}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2059/} }
TY - JOUR AU - Tang, Xiang AU - Weinstein, Alan TI - Quantization and Morita equivalence for constant Dirac structures on tori JO - Annales de l'Institut Fourier PY - 2004 SP - 1565 EP - 1580 VL - 54 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2059/ DO - 10.5802/aif.2059 LA - en ID - AIF_2004__54_5_1565_0 ER -
%0 Journal Article %A Tang, Xiang %A Weinstein, Alan %T Quantization and Morita equivalence for constant Dirac structures on tori %J Annales de l'Institut Fourier %D 2004 %P 1565-1580 %V 54 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2059/ %R 10.5802/aif.2059 %G en %F AIF_2004__54_5_1565_0
Tang, Xiang; Weinstein, Alan. Quantization and Morita equivalence for constant Dirac structures on tori. Annales de l'Institut Fourier, Volume 54 (2004) no. 5, pp. 1565-1580. doi : 10.5802/aif.2059. http://archive.numdam.org/articles/10.5802/aif.2059/
[1] Quantization of foliations, Vol. 1, 2, World Scientific, 1992, p. 471-487 | Zbl
& ,[2] Noncommutative Geometry, Academic Press, 1994 | MR | Zbl
,[3] Noncommutative Geometry and Matrix Theory: Compactification on Tori, J. High Energy Phys (1998) | MR | Zbl
, & ,[4] Dirac manifolds, Trans. A.M.S 319 (1990) p. 631-661 | MR | Zbl
,[5] On the K-theory of the algebras generated by a projective representation of a torsion-free discrete abelian group, Pitman, 1984, p. 157-184 | Zbl
,[6] Morita equivalence of smooth noncommutative tori, e-print, math.OA/0311502 | Zbl
& ,[7] Kronecker foliation, -branes and Morita equivalence of noncommutative two-tori, J. High Energy Phys 8 (2002) no.50 | MR | Zbl
,[8] Homological algebra of mirror symmetry., Vol. 1, 2, Birkhäuser, 1995, p. 120-139 | Zbl
,[9] Strong Morita equivalence of higher-dimensional noncommutative tori, e-print. To appear J. Reine Angew. Math., math.OA/0303123 | MR | Zbl
,[10] Noncommutative Geometry and String Duality, J. High Energy Phys., 1999
& ,[11] Equivalence and isomorphism for groupoid -algebras, J. Operator Theory 17 (1987) p. 3-22 | MR | Zbl
, & ,[12] Duality between and with its application to Picard sheaves, Nagoya Math. J. 81 (1981) p. 153-175 | MR | Zbl
,[13] Morita equivalence for -algebras and -algebras, J. Pure Appl. Algebra 5 (1974) p. 51-96 | MR | Zbl
,[14] -algebras associated with irrational rotations, Pacific. J. Math. 93 (1981) p. 415-429 | MR | Zbl
,[15] Projective modules over higher-dimensional non-commutative noncommutative tori, Canadian J. Math 40 (1988) p. 257-338 | MR | Zbl
,[16] Deformation quantization of Heisenberg manifolds, Commun. Math. Phys 122 (1989) p. 531-562 | MR | Zbl
,[17] Morita equivalence of multidimensional noncommutative tori, Int. J. Math 10 (1999) p. 289-299 | MR | Zbl
& ,[18] Morita equivalence and duality, Lett. Math. Phys 50 (1999) p. 309-321 | MR | Zbl
,[19] Deformation Quantization of Pseudo Symplectic (Poisson) Groupoids, e-print, math.QA/0405378 | Zbl
,[20] Symplectic groupoids, geometric quantization, and irrational rotation algebras, MSRI Series, Springer, 1991, p. 281-290 | Zbl
,[21] Noncommutative Poisson algebras, Amer. J. Math 116 (1994) p. 101-125 | MR | Zbl
,Cited by Sources: