Groupes de Schottky et comptage
[Schottky groups and counting]
Annales de l'Institut Fourier, Volume 55 (2005) no. 2, pp. 373-429.

Let X be a symmetric space of noncompact type and Γ a discrete group of isometries of X of Schottky type. In this paper, we give asymptotics of the orbitals counting functions associated to the action of Γ on X.

Soient X un espace symétrique de type non compact et Γ un groupe discret d’isométries de X du type de Schottky. Dans cet article, nous donnons des équivalents des fonctions orbitales de comptage pour l’action de Γ sur X.

DOI: 10.5802/aif.2102
Classification: 22E40,  53C35,  37D35
Keywords: Lie groups, discrete subgroups, higher rank geometry, thermodynamical formalism
Quint, Jean-François 1

1 Université Paris VII Denis Diderot, Institut de mathématique de Jussieu, case 7012, 2 place Jussieu, 75251 Paris cedex 05 (France)
@article{AIF_2005__55_2_373_0,
     author = {Quint, Jean-Fran\c{c}ois},
     title = {Groupes de {Schottky} et comptage},
     journal = {Annales de l'Institut Fourier},
     pages = {373--429},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {2},
     year = {2005},
     doi = {10.5802/aif.2102},
     zbl = {1087.22010},
     mrnumber = {2147895},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/aif.2102/}
}
TY  - JOUR
AU  - Quint, Jean-François
TI  - Groupes de Schottky et comptage
JO  - Annales de l'Institut Fourier
PY  - 2005
DA  - 2005///
SP  - 373
EP  - 429
VL  - 55
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2102/
UR  - https://zbmath.org/?q=an%3A1087.22010
UR  - https://www.ams.org/mathscinet-getitem?mr=2147895
UR  - https://doi.org/10.5802/aif.2102
DO  - 10.5802/aif.2102
LA  - fr
ID  - AIF_2005__55_2_373_0
ER  - 
%0 Journal Article
%A Quint, Jean-François
%T Groupes de Schottky et comptage
%J Annales de l'Institut Fourier
%D 2005
%P 373-429
%V 55
%N 2
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2102
%R 10.5802/aif.2102
%G fr
%F AIF_2005__55_2_373_0
Quint, Jean-François. Groupes de Schottky et comptage. Annales de l'Institut Fourier, Volume 55 (2005) no. 2, pp. 373-429. doi : 10.5802/aif.2102. http://archive.numdam.org/articles/10.5802/aif.2102/

[16 J.-F. Quint Mesures de Patterson-Sullivan en rang supérieur, Geometric and functional analysis, Volume 12 (2002), pp. 776-809 | DOI | MR | Zbl

[1] N. Anantharaman Precise counting results for closed orbits of Anosov flows, Annales Scientifiques de l'École Normale Supérieure, Volume 33 (2000), pp. 33-56 | Numdam | MR | Zbl

[2] M. Babillot; F. Ledrappier Lalley's theorem on periodic orbits of hyperbolic flows, Ergodic theory and dynamical systems, Volume 18 (1998), pp. 17-39 | MR | Zbl

[3] Y. Benoist Propriétés asymptotiques des groupes linéaires, Geometric and functional analysis, Volume 7 (1997), pp. 1-47 | DOI | MR | Zbl

[4] Y. Benoist Propriétés asymptotiques des groupes linéaires (II), Advanced studies in pure mathematics, Volume 26 (2000), pp. 33-48 | MR | Zbl

[5] J.-P. Conze; Y. Guivarc'h Limit sets of groups of linear transformations (Sankhya Series A), Volume 62 (2000), pp. 367-385 | Zbl

[6] D. Dolgopyat Prevalence of rapid mixing in hyperbolic flows, Ergodic theory and dynamical systems, Volume 18 (1998), pp. 1097-1114 | DOI | MR | Zbl

[7] A. Eskin; C. McMullen Mixing, counting and equidistribution in Lie groups, Duke mathematical journal, Volume 71 (1993), pp. 181-209 | DOI | MR | Zbl

[8] S. Helgason Differential geometry, Lie groups and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, San Diego, 1978 | MR | Zbl

[9] A. Katsuda; T. Sunada Closed orbits in homology classes, Publications mathématiques de l'IHES, Volume 71 (1990), pp. 5-32 | Numdam | MR | Zbl

[10] S. P. Lalley Renewal theorems in symbolic dynamics, with application to geodesic flows, noneuclidean tessellations and their fractal limits, Acta mathematica, Volume 163 (1989), pp. 1-55 | DOI | MR | Zbl

[11] G. Prasad -regular elements in Zariski dense subgroups, Oxford quaterly journal of mathematics, Volume 45 (1994), pp. 541-545 | MR | Zbl

[12] W. Parry; M. Pollicott Zeta functions and the periodic orbit structure for hyperbolic dynamics (Astérisque) (1990), pp. 187-188 | Zbl

[13] M. Pollicott; R. Sharp Linear actions of free groups, Annales de l'institut Fourier, Volume 51 (2001), pp. 131-150 | DOI | Numdam | MR | Zbl

[14] M. Pollicott; R. Sharp Asymptotic expansions for closed orbits in homology classes, GeometriæDedicata, Volume 87 (2001), pp. 123-160 | MR | Zbl

[15] J.-F. Quint Divergence exponentielle des sous-groupes discrets en rang supérieur, Commentarii Mathematicii Helvetici, Volume 77 (2002), pp. 563-608 | DOI | MR | Zbl

[17] J.-F. Quint L'indicateur de croissance des groupes de Schottky, Ergodic theory and dynamical systems, Volume 23 (2003), pp. 249-272 | MR | Zbl

[18] Th. Roblin Ergodicité et équidistribution en courbure négative (Mémoires), Volume 95 (2003) | Numdam | Zbl

[18] C. Series The infinite word problem and limit sets in Fuchsian groups, Ergodic theory and dynamical systems, Volume 1 (1981), pp. 337-360 | MR | Zbl

[19] J. Tits Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque, Journal f\" ur die reine und angewandte Mathematik, Volume 247 (1971), pp. 196-220 | MR | Zbl

Cited by Sources: