A limit linear series moduli scheme
Annales de l'Institut Fourier, Volume 56 (2006) no. 4, pp. 1165-1205.

We develop a new, more functorial construction for the basic theory of limit linear series, which provides a compactification of the Eisenbud-Harris theory. In an appendix, in order to obtain the necessary dimensional lower bounds on our limit linear series scheme we develop a theory of “linked Grassmannians”; these are schemes parametrizing sub-bundles of a sequence of vector bundles, which map into one another under fixed maps of the ambient bundles.

Nous produisons une construction fonctorielle nouvelle pour la théorie fondamentale des séries linéaires limites, qui nous donne une compactification de la théorie de Eisenbud-Harris. Dans un appendice, pour obtenir les bornes inférieures dimensionnelles nécessaires pour notre schéma de séries linéaires limites nous produisons une théorie de “grassmaniennes liées”  ; ce sont des schémas paramétrisants sous-fibrés d’une suite de fibrés vectoriels, qui se transforment sous les transformations données des fibrés ambiants.

DOI: 10.5802/aif.2209
Classification: 14H51
Keywords: Limit linear series, compactification, linked Grassmannian
Mot clés : séries linéaires limites, compactification, grassmanienne liée
Osserman, Brian 1

1 University of California Department of mathematics Berkeley CA 94707-3840 (USA)
@article{AIF_2006__56_4_1165_0,
     author = {Osserman, Brian},
     title = {A limit linear series moduli scheme},
     journal = {Annales de l'Institut Fourier},
     pages = {1165--1205},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {4},
     year = {2006},
     doi = {10.5802/aif.2209},
     zbl = {1118.14037},
     mrnumber = {2266887},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2209/}
}
TY  - JOUR
AU  - Osserman, Brian
TI  - A limit linear series moduli scheme
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 1165
EP  - 1205
VL  - 56
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2209/
DO  - 10.5802/aif.2209
LA  - en
ID  - AIF_2006__56_4_1165_0
ER  - 
%0 Journal Article
%A Osserman, Brian
%T A limit linear series moduli scheme
%J Annales de l'Institut Fourier
%D 2006
%P 1165-1205
%V 56
%N 4
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2209/
%R 10.5802/aif.2209
%G en
%F AIF_2006__56_4_1165_0
Osserman, Brian. A limit linear series moduli scheme. Annales de l'Institut Fourier, Volume 56 (2006) no. 4, pp. 1165-1205. doi : 10.5802/aif.2209. http://archive.numdam.org/articles/10.5802/aif.2209/

[1] i Bigas, Montserrat Teixidor Brill-Noether theory for stable vector bundles, Duke Mathematical Journal, Volume 62 (1991) no. 2, pp. 385-400 | DOI | MR | Zbl

[2] Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel Néron models, Springer-Verlag, 1991 | MR | Zbl

[3] Bost, Jean-Benoît; Loeser, Francois; Raynaud, Michel Courbes semi-stables et groupe fondamental en géométrie algébrique (1998)

[4] Bruns, Winfried; Vetter, Udo Determinantal rings, Lecture Notes in Mathematics, 1327, Springer-Verlag, 1988 | MR | Zbl

[5] Ciliberto, Ciro Geometric aspects of polynomial interpolation in more variables and of Waring’s problem, European Congress of Mathematics, Birkhauser, Volume I (2001), pp. 289-316 | DOI | MR | Zbl

[6] Deligne, Pierre; Mumford, David The irreducibility of the space of curves of given genus, Institut des Hautes Études Scientifiques Publications Mathématiques, Volume 36 (1969), pp. 75-109 | DOI | Numdam | MR | Zbl

[7] Eisenbud, David Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math., Volume 150, Springer-Verlag, 1995 | MR | Zbl

[8] Eisenbud, David; Harris, Joe Divisors on general curves and cuspidal rational curves, Inventiones Mathematica, Volume 74 (1983), pp. 371-418 | DOI | Zbl

[9] Eisenbud, David; Harris, Joe Limit linear series: Basic theory, Inventiones Mathematicae, Volume 85 (1986), pp. 337-371 | DOI | MR | Zbl

[10] Esteves, Eduardo Linear systems and ramification points on reducible nodal curves, Matematica Contemporanea, Volume 14 (1998), pp. 21-35 | MR | Zbl

[11] Gimigliano, Alessandro Our thin knowledge of fat points, The Curves Seminar at Queen’s Vol. VI (Queen’s Papers in Pure and Applied Mathematics), Queen’s University, Kingston, ON, 1989 no. 83 | MR | Zbl

[12] Grothendieck, A.; Dieudonné, J. Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes, Institut des Hautes Études Scientifiques, Publications mathématiques, Volume 8 (1961), pp. 5-222 | DOI | Numdam | MR | Zbl

[13] Grothendieck, A.; Dieudonné, J. Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, seconde partie, Institut des Hautes Études Scientifiques, Publications mathématiques, Volume 17 (1963), pp. 5-91 | Numdam | MR | Zbl

[14] Grothendieck, A.; Dieudonné, J. Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, troisième partie, Institut des Hautes Études Scientifiques, Publications mathématiques, Volume 28 (1966), pp. 5-255 | DOI | Numdam | MR | Zbl

[15] Grothendieck, A.; Dieudonné, J. Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, quatrième partie, Institut des Hautes Études Scientifiques, Publications Mathématiques, Volume 32 (1967), pp. 5-361 | Numdam | MR | Zbl

[16] Harris, Joe; Morrison, Ian Moduli of curves, Graduate Texts in Mathematics, 187, Springer-Verlag, New Yok, 1998 | MR | Zbl

[17] de Jong, A. J.; Oort, F. On extending families of curves, J. Algebraic Geometry, Volume 6 (1997), pp. 545-562 | MR | Zbl

[18] Osserman, Brian Rational functions with given ramification in characteristic p (to appear) | MR | Zbl

[19] Raynaud, Michel Anneaux locaux henséliens, Lecture Notes in Mathematics, 169, Springer-Verlag, Berlin, 1970 | MR | Zbl

[20] Winters, Gayn B. On the existence of certain families of curves, American Journal of Mathematics, Volume 96 (1974) no. 2, pp. 215-228 | DOI | MR | Zbl

Cited by Sources: