Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number
[Spectre de diffraction d’ensembles de Delaunay avec poids supportés par des beta-réseaux où beta est un nombre de Pisot unitaire]
Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2437-2461.

On caractérise au moyen de la théorie des distributions la transformée de Fourier d’un peigne de Dirac avec poids, plus particulièrement la partie purement ponctuelle qui correspond aux pics de Bragg dans le spectre de diffraction. La fonction intensité de ces derniers est donnée d’une manière explicite. On en déduit le spectre de diffraction d’ensembles de Delaunay avec poids supportés par les beta-réseaux dans le cas où le poids est factorisable et où beta est le nombre d’or.

The Fourier transform of a weighted Dirac comb of beta-integers is characterized within the framework of the theory of Distributions, in particular its pure point part which corresponds to the Bragg part of the diffraction spectrum. The corresponding intensity function on this Bragg part is computed. We deduce the diffraction spectrum of weighted Delone sets on beta-lattices in the split case for the weight, when beta is the golden mean.

DOI : https://doi.org/10.5802/aif.2245
Classification : 52C23,  78A45,  42A99
Mots clés : Ensembles de Delaunay, ensembles de Meyer, beta-entiers, beta-réseaux, nombres de Pisot-Vijayaraghavan, diffraction mathématique
@article{AIF_2006__56_7_2437_0,
     author = {Gazeau, Jean-Pierre and Verger-Gaugry, Jean-Louis},
     title = {Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number},
     journal = {Annales de l'Institut Fourier},
     pages = {2437--2461},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {7},
     year = {2006},
     doi = {10.5802/aif.2245},
     mrnumber = {2290786},
     zbl = {1119.52015},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2245/}
}
Gazeau, Jean-Pierre; Verger-Gaugry, Jean-Louis. Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number. Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2437-2461. doi : 10.5802/aif.2245. http://archive.numdam.org/articles/10.5802/aif.2245/

[1] Argabright, L.; Gil de Lamadrid, J. Fourier Analysis of Unbounded Measures on Locally Compact Abelian Groups, Memoirs of the American Mathematical Society, 145, American Mathematical Society, Providence, RI, 1974 | MR 621876 | Zbl 0294.43002

[2] Baake, M.; Moody, R. V. Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math., Volume 573 (2004), pp. 61-94 | Article | MR 2084582 | Zbl 1188.43008

[3] Bell, J. P.; Hare, K. G. A Classification of (some) Pisot-Cyclotomic Numbers, J. Number Theory, Volume 115 (2005), pp. 215-229 | Article | MR 2180499 | Zbl 1084.11058

[4] Bertrandias, J.-P. Espaces de fonctions continues et bornées en moyenne asymptotique d’ordre p, Mémoire Soc. Math. France (1966) no. 5, pp. 3-106 | EuDML 94543 | Numdam | MR 196411 | Zbl 0148.11701

[5] Bertrandias, J.-P.; Couot, J.; Dhombres, J.; Mendès-France, M.; Phu Hien, P.; Vo Khac, Kh. Espaces de Marcinkiewicz, corrélations, mesures, systèmes dynamiques, Masson, Paris, 1987 | MR 878355 | Zbl 0617.46034

[6] Bombieri, E.; Taylor, J. E. Which distributions diffract? An initial investigation, J. Phys. Colloque, Volume 47 (1986) no. C3, pp. 19-28 | MR 866320 | Zbl 0693.52002

[7] Bombieri, E.; Taylor, J. E. Quasicrystal, tilings, and algebraic number theory: Some preliminary connections, The legacy of S. Kovalevskaya (Contemporary Mathematics), Volume 64, American Mathematical Society, Providence, RI, 1987, pp. 241-264 | MR 881466 | Zbl 0617.43002

[8] Burdík, Č.; Frougny, C.; Gazeau, J.-P.; Krejčar, R. Beta-integers as natural counting systems for quasicrystals, J. of Physics A: Math. Gen., Volume 31 (1998), pp. 6449-6472 | Article | MR 1644115 | Zbl 0941.52019

[9] Cordoba, A. Dirac combs, Lett. Math. Phys., Volume 17 (1989), pp. 191-196 | Article | MR 995797 | Zbl 0681.42013

[10] Cowley, J.-M. Diffraction Physics, North-Holland, Amsterdam, 1986 (2nd edition)

[11] Denoyer, F.; Elkharrat, A.; Gazeau, J.-P. Beta-lattice multiresolution of quasicrystalline Bragg peaks (2006) (submitted)

[12] Elkharrat, A. Scale dependent partitioning of one-dimensional aperiodic set diffraction, Europ. Phys. J., Volume B39 (2004), pp. 287-294 and Thèse de l’Université Paris 7 - Denis Diderot (2004)

[13] Elkharrat, A.; Frougny, Ch.; Gazeau, J.-P.; Verger-Gaugry, J.-L. Symmetry groups for beta-lattices, Theor. Comp. Sci., Volume 319 (2004) no. 1-3, pp. 281-305 | Article | MR 2074957 | Zbl 1068.52028

[14] Fabre, S. Substitutions et β-systèmes de numération, Theor. Comp. Sci., Volume 137 (1995), pp. 219-236 | Article | MR 1311222 | Zbl 0872.11017

[15] Fraenkel, A. S. Systems of numeration, Amer. Math. Monthly, Volume 92 (1985) no. 2, pp. 105-114 | Article | MR 777556 | Zbl 0568.10005

[16] Frougny, C. Number Representation and Finite Automata, London Math. Soc. Lecture Note Ser.;, Volume 279 (2000), pp. 207-228 | MR 1776760 | Zbl 0976.11003

[17] Frougny, C.; Gazeau, J.-P.; Krejčar, R. Additive and multiplicative properties of point-sets based on beta-integers, Theor. Comp. Sci., Volume 303 (2003), pp. 491-516 | Article | MR 1990778 | Zbl 1036.11034

[18] Frougny, C.; Solomyak, B. Finite beta-expansions, Ergod. Theor. Dynam. Syst., Volume 12 (1992), pp. 713-723 | Article | MR 1200339 | Zbl 0814.68065

[19] Gazeau, J.-P.; Moody, R.V. Pisot-cyclotomic integers for quasilattices, The Mathematics of Long-Range Aperiodic Order (NATO advances Science Institutes, Series C: Mathematical and Physical Sciences 489), Kluwer Academic Publishers, Dordrecht, 1997, pp. 175-198 | MR 1460024 | Zbl 0887.11043

[20] Gazeau, J.-P.; Verger-Gaugry, J.-L. Geometric study of the beta-integers for a Perron number and mathematical quasicrystals, J. Théorie Nombres Bordeaux, Volume 16 (2004), pp. 125-149 | Article | Numdam | MR 2145576 | Zbl 1075.11007

[21] Gil de Lamadrid, J.; Argabright, L. Almost Periodic Measures, Memoirs of the American Mathematical Society, American Mathematical Society, Providence, RI, Volume 85 (1990) no. 428, pp. vi+219 | MR 979431 | Zbl 0719.43006

[22] Guinier, A. Theory and Techniques for X-Ray Crystallography, Dunod, Paris, 1964

[23] Hof, A. On diffraction by aperiodic structures, Commun. Math. Phys., Volume 169 (1995), pp. 25-43 | Article | MR 1328260 | Zbl 0821.60099

[24] Lagarias, J. C. Geometric Models for Quasicrystals I. Delone Sets of Finite Type, Discr. Comput. Geom., Volume 21 (1999), pp. 161-191 | Article | MR 1668082 | Zbl 0924.68190

[25] Lagarias, J. C.; Baake, M.; Moody, R. V. Mathematical Quasicrystals and the problem of diffraction, Directions in Mathematical Quasicrystals (CRM Monograph Series), Amer. Math. Soc., Providence, RI, 2000, pp. 61-93 | MR 1798989 | Zbl 01584913

[26] Lothaire, M. Algebraic Combinatorics on Words, Cambridge University Press, 2002 | MR 1905123 | Zbl 1001.68093

[27] Meyer, Y. Nombres de Pisot, Nombres de Salem et Analyse Harmonique, Lect. Notes Math., Volume 117, Springer, 1969, pp. 63 | MR 568288 | Zbl 0189.14301

[28] Meyer, Y. Algebraic Numbers and Harmonic Analysis, North-Holland, 1972 | MR 485769 | Zbl 0267.43001

[29] Meyer, Y.; Axel, F.; Gratias, D. Quasicrystals, Diophantine approximation and algebraic numbers, Beyond Quasicrystals, Springer-Verlag & Les Editions de Physique, 1995, pp. 3-16 | MR 1420415 | Zbl 0881.11059

[30] Moody, R. V.; Moody, R. V. Meyer sets and their duals, The Mathematics of Long-Range Aperiodic Order, Kluwer, 1997, pp. 403-442 | MR 1460032 | Zbl 0880.43008

[31] Moody, R. V.; Axel, F.; Denoyer, F.; Gazeau, J.-P. From quasicrystals to more complex systems, Model Sets: A Survey, Springer & Les Editions de Physique, 2000, pp. 145-166

[32] Muraz, G.; Verger-Gaugry, J.-L. On lower bounds of the density of Delone sets and holes in sequences of sphere packings, Exp. Math., Volume 14 (2005) no. 1, pp. 47-57 | Article | MR 2146518 | Zbl 05122033

[33] Parry, W. On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar., Volume 11 (1960), pp. 401-416 | Article | MR 142719 | Zbl 0099.28103

[34] Pythéas Fogg, N. Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., Volume 1794, Springer, 2003 | MR 1970385 | Zbl 1014.11015

[35] Rényi, A. Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., Volume 8 (1957), pp. 477-493 | Article | MR 97374 | Zbl 0079.08901

[36] Schlottmann, M.; Patera, J. Cut-and-Project sets in locally compact Abelian groups, Quasicrystals and Discrete Geometry (Fields Institute Monograph Series), Volume 10, Amer. Math. Soc., Providence, RI, 1998, pp. 247-264 | MR 1636782 | Zbl 0912.22002

[37] Schwartz, L. Théorie des distributions, Hermann, Paris, 1973 | MR 209834 | Zbl 0962.46025

[38] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953 (1951) | Article

[39] Strungaru, N. Almost Periodic Measures and Long-Range Order in Meyer Sets, Discr. Comput. Geom., Volume 33 (2005), pp. 483-505 | Article | MR 2121992 | Zbl 1062.43008

[40] Thurston, W. P. Groups, tilings, and finite state automata (Summer 1989) (A.M.S. Colloquium Lectures, Boulder)

[41] Verger-Gaugry, J.-L. On gaps in Rényi β -expansions of unity for β > 1 an algebraic number (2006) (Annales Institut Fourier) | Numdam

[42] Verger-Gaugry, J.-L.; Nyssen, L. On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings, Number Theory and Physics (IRMA Lectures in Mathematics and Theoretical Physics), E.M.S. Publishing House, 2006 | Zbl 1170.52303

[43] Vo Khac, K. Fonctions et distributions stationnaires. Application à l’étude des solutions stationnaires d’équations aux dérivées partielles, Espaces de Marcinkiewicz, corrélations, mesures, systèmes dynamiques, Masson, Paris, 1987, pp. 11-57