Nous étudions les propriétés spectrales des opérateurs de transfert associés aux difféomorphismes
We study spectral properties of transfer operators for diffeomorphisms
Keywords: Hyperbolic dynamics, transfer operator, Ruelle operator, spectrum, axiom A, Anosov, Perron-Frobenius, quasi-compact
Mot clés : dynamique hyperbolique, opérateur de transfert, opérateur de Ruelle, spectre, Axiome A, Anosov, Perron-Frobenius, quasi-compacité
@article{AIF_2007__57_1_127_0, author = {Baladi, Viviane and Tsujii, Masato}, title = {Anisotropic {H\"older} and {Sobolev} spaces for hyperbolic diffeomorphisms}, journal = {Annales de l'Institut Fourier}, pages = {127--154}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {1}, year = {2007}, doi = {10.5802/aif.2253}, zbl = {1138.37011}, mrnumber = {2313087}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2253/} }
TY - JOUR AU - Baladi, Viviane AU - Tsujii, Masato TI - Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms JO - Annales de l'Institut Fourier PY - 2007 SP - 127 EP - 154 VL - 57 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2253/ DO - 10.5802/aif.2253 LA - en ID - AIF_2007__57_1_127_0 ER -
%0 Journal Article %A Baladi, Viviane %A Tsujii, Masato %T Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms %J Annales de l'Institut Fourier %D 2007 %P 127-154 %V 57 %N 1 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2253/ %R 10.5802/aif.2253 %G en %F AIF_2007__57_1_127_0
Baladi, Viviane; Tsujii, Masato. Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Annales de l'Institut Fourier, Tome 57 (2007) no. 1, pp. 127-154. doi : 10.5802/aif.2253. https://www.numdam.org/articles/10.5802/aif.2253/
[1] Smoothness of solenoidal attractors, Discrete Cont. Dynam. Systems, Volume 15 (2006), pp. 21-35 | DOI | MR | Zbl
[2] Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, Volume 16, World Scientific, 2000 | MR | Zbl
[3] Anisotropic Sobolev spaces and dynamical transfer operators:
[4] Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, Volume 15 (2002), pp. 1905-1973 | DOI | MR | Zbl
[5] The flat-trace asymptotics of a uniform system of contractions, Ergodic Theory Dynam. Sys., Volume 15 (1995), pp. 1061-1073 | DOI | MR | Zbl
[6] Meromorphic zeta functions for analytic flows, Comm. Math. Phys., Volume 174 (1995), pp. 161-190 | DOI | MR | Zbl
[7] Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Sys., Volume 26 (2006), pp. 189-218 | DOI | MR | Zbl
[8] A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces, Ergodic Theory Dynam. Sys., Volume 23 (2003), pp. 175-191 | MR | Zbl
[9] Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc., Volume 118 (1993), pp. 627-634 | MR | Zbl
[10] The analysis of linear partial differential operators. III. Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften, Volume 274, Springer-Verlag, Berlin, 1994 | MR | Zbl
[11] Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness, Nonlinearity, Volume 12 (1999), pp. 141-179 | DOI | MR | Zbl
[12] Theorems on Fourier series and power series, Proc. London Math. Soc., Volume 42 (1937), pp. 52-89 | DOI | Zbl
[13] The thermodynamic formalism for expanding maps, Comm. Math. Phys., Volume 125 (1989), pp. 239-262 | DOI | MR | Zbl
[14] The correlation spectrum for hyperbolic analytic maps, Nonlinearity, Volume 5 (1992), pp. 1237-1263 | DOI | MR | Zbl
[15] Pseudo differential operators, Lecture Notes in Math., Volume 416, Springer-Verlag, Berlin-New York, 1974 | MR | Zbl
[16] Pseudodifferential operators and nonlinear PDE, Progress in Math., Volume 100, Birkhäuser, Boston, 1991 | MR | Zbl
- Counting Pollicott–Ruelle Resonances for Axiom A Flows, Communications in Mathematical Physics, Volume 406 (2025) no. 2 | DOI:10.1007/s00220-024-05215-z
- Dynamical torsion for contact Anosov flows, Analysis PDE, Volume 17 (2024) no. 8, p. 2619 | DOI:10.2140/apde.2024.17.2619
- Distribution of Ruelle resonances for real-analytic Anosov diffeomorphisms, Annales Henri Lebesgue, Volume 7 (2024), p. 673 | DOI:10.5802/ahl.208
- Hénon Maps: A List of Open Problems, Arnold Mathematical Journal, Volume 10 (2024) no. 4, p. 585 | DOI:10.1007/s40598-024-00252-x
- Absolutely Continuous Invariant Measure for Generalized Horseshoe Maps, Bulletin of the Brazilian Mathematical Society, New Series, Volume 55 (2024) no. 2 | DOI:10.1007/s00574-024-00402-x
- Stability estimates for the holonomy inverse problem, Communications in Partial Differential Equations, Volume 49 (2024) no. 5-6, p. 428 | DOI:10.1080/03605302.2024.2346942
- Regularity and linear response formula of the SRB measures for solenoidal attractors, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 10, p. 2782 | DOI:10.1017/etds.2023.121
- Fractal Weyl law for the Ruelle spectrum of Anosov flows, Annales Henri Lebesgue, Volume 6 (2023), p. 331 | DOI:10.5802/ahl.167
- Radial source estimates in Hölder-Zygmund spaces for hyperbolic dynamics, Annales Henri Lebesgue, Volume 6 (2023), p. 643 | DOI:10.5802/ahl.175
- Discontinuities Cause Essential Spectrum, Communications in Mathematical Physics, Volume 398 (2023) no. 2, p. 627 | DOI:10.1007/s00220-022-04531-6
- Globally Coupled Anosov Diffeomorphisms: Statistical Properties, Communications in Mathematical Physics, Volume 400 (2023) no. 3, p. 1791 | DOI:10.1007/s00220-022-04631-3
- Projective Cones for Sequential Dispersing Billiards, Communications in Mathematical Physics, Volume 401 (2023) no. 1, p. 841 | DOI:10.1007/s00220-023-04657-1
- VIRTUALLY EXPANDING DYNAMICS, Kyushu Journal of Mathematics, Volume 77 (2023) no. 2, p. 291 | DOI:10.2206/kyushujm.77.291
- Spectral Properties of Ruelle Transfer Operators for Regular Gibbs Measures and Decay of Correlations for Contact Anosov Flows, Memoirs of the American Mathematical Society, Volume 283 (2023) no. 1404 | DOI:10.1090/memo/1404
- Quantitative statistical properties of two-dimensional partially hyperbolic systems, Advances in Mathematics, Volume 409 (2022), p. 108625 | DOI:10.1016/j.aim.2022.108625
- On the fractional susceptibility function of piecewise expanding maps, Discrete Continuous Dynamical Systems, Volume 42 (2022) no. 2, p. 679 | DOI:10.3934/dcds.2021133
- Anosov diffeomorphisms, anisotropic BV spaces and regularity of foliations, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 8, p. 2431 | DOI:10.1017/etds.2021.52
- The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds, Inventiones mathematicae, Volume 229 (2022) no. 1, p. 303 | DOI:10.1007/s00222-022-01108-x
- Rigorous justification for the space–split sensitivity algorithm to compute linear response in Anosov systems, Nonlinearity, Volume 35 (2022) no. 8, p. 4357 | DOI:10.1088/1361-6544/ac7692
- Horocycle averages on closed manifolds and transfer operators, Tunisian Journal of Mathematics, Volume 4 (2022) no. 3, p. 387 | DOI:10.2140/tunis.2022.4.387
- A paradifferential approach for hyperbolic dynamical systems and applications, Tunisian Journal of Mathematics, Volume 4 (2022) no. 4, p. 673 | DOI:10.2140/tunis.2022.4.673
- Spectral Theory of the Frame Flow on Hyperbolic 3-Manifolds, Annales Henri Poincaré, Volume 22 (2021) no. 11, p. 3565 | DOI:10.1007/s00023-021-01068-7
- Global Trace Formula for Ultra-Differentiable Anosov Flows, Communications in Mathematical Physics, Volume 385 (2021) no. 3, p. 1771 | DOI:10.1007/s00220-020-03930-x
- Almost sure invariance principle for random dynamical systems via Gouëzel's approach, Nonlinearity, Volume 34 (2021) no. 10, p. 6773 | DOI:10.1088/1361-6544/ac14a1
- Analytical techniques for linear response formula of equilibrium states, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 30 (2020) no. 1 | DOI:10.1063/1.5122810
- The Fried conjecture in small dimensions, Inventiones mathematicae, Volume 220 (2020) no. 2, p. 525 | DOI:10.1007/s00222-019-00935-9
- Hyperbolic Dynamics Meet Fourier Analysis, an Invitation to the Book by V. Baladi: “Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps”, Jahresbericht der Deutschen Mathematiker-Vereinigung, Volume 122 (2020) no. 4, p. 263 | DOI:10.1365/s13291-019-00209-6
- SPECTRAL ANALYSIS OF MORSE–SMALE FLOWS I: CONSTRUCTION OF THE ANISOTROPIC SPACES, Journal of the Institute of Mathematics of Jussieu, Volume 19 (2020) no. 5, p. 1409 | DOI:10.1017/s1474748018000439
- Hölder regularity and exponential decay of correlations for a class of piecewise partially hyperbolic maps, Nonlinearity, Volume 33 (2020) no. 12, p. 6790 | DOI:10.1088/1361-6544/aba888
- Flat trace statistics of the transfer operator of a random partially expanding map, Nonlinearity, Volume 33 (2020) no. 7, p. 3303 | DOI:10.1088/1361-6544/ab81ef
- Resonant spaces for volume-preserving Anosov flows, Pure and Applied Analysis, Volume 2 (2020) no. 4, p. 795 | DOI:10.2140/paa.2020.2.795
- Ruelle spectrum of linear pseudo-Anosov maps, Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), p. 811 | DOI:10.5802/jep.107
- The spectral gap for transfer operators of torus extensions over expanding maps, Nonlinearity, Volume 32 (2019) no. 1, p. 356 | DOI:10.1088/1361-6544/aaea87
- Strong laws of large numbers for intermediately trimmed Birkhoff sums of observables with infinite mean, Stochastic Processes and their Applications, Volume 129 (2019) no. 10, p. 4163 | DOI:10.1016/j.spa.2018.11.015
- Afterword: Dynamical zeta functions for Axiom A flows, Bulletin of the American Mathematical Society, Volume 55 (2018) no. 3, p. 337 | DOI:10.1090/bull/1628
- A gentle introduction to anisotropic banach spaces, Chaos, Solitons Fractals, Volume 116 (2018), p. 29 | DOI:10.1016/j.chaos.2018.08.028
- On the Smooth Dependence of SRB Measures for Partially Hyperbolic Systems, Communications in Mathematical Physics, Volume 358 (2018) no. 1, p. 45 | DOI:10.1007/s00220-018-3088-x
- Introduction, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 1 | DOI:10.1007/978-3-319-77661-3_1
- Anisotropic Banach spaces defined via cones, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 123 | DOI:10.1007/978-3-319-77661-3_4
- A variational formula for the essential spectral radius, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 157 | DOI:10.1007/978-3-319-77661-3_5
- Smooth expanding maps: The spectrum of the transfer operator, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 21 | DOI:10.1007/978-3-319-77661-3_2
- Exponential decay of correlations for finite horizon Sinai billiard flows, Inventiones mathematicae, Volume 211 (2018) no. 1, p. 39 | DOI:10.1007/s00222-017-0745-1
- Limit theorems for fast–slow partially hyperbolic systems, Inventiones mathematicae, Volume 213 (2018) no. 3, p. 811 | DOI:10.1007/s00222-018-0798-9
- Non-stationary Almost Sure Invariance Principle for Hyperbolic Systems with Singularities, Journal of Statistical Physics, Volume 172 (2018) no. 6, p. 1499 | DOI:10.1007/s10955-018-2107-9
- Exponential mixing for generic volume-preserving Anosov flows in dimension three, Journal of the Mathematical Society of Japan, Volume 70 (2018) no. 2 | DOI:10.2969/jmsj/07027595
- Characteristic functions as bounded multipliers on anisotropic spaces, Proceedings of the American Mathematical Society, Volume 146 (2018) no. 10, p. 4405 | DOI:10.1090/proc/14107
- A Local Trace Formula for Anosov Flows, Annales Henri Poincaré, Volume 18 (2017) no. 1, p. 1 | DOI:10.1007/s00023-016-0504-7
- On the Support of Pollicott–Ruelle Resonanant States for Anosov Flows, Annales Henri Poincaré, Volume 18 (2017) no. 1, p. 37 | DOI:10.1007/s00023-016-0514-5
- Building Thermodynamics for Non-uniformly Hyperbolic Maps, Arnold Mathematical Journal, Volume 3 (2017) no. 1, p. 37 | DOI:10.1007/s40598-016-0052-8
- Mathematical study of scattering resonances, Bulletin of Mathematical Sciences, Volume 7 (2017) no. 1, p. 1 | DOI:10.1007/s13373-017-0099-4
- Stochastic Stability of Pollicott–Ruelle Resonances, Communications in Mathematical Physics, Volume 356 (2017) no. 2, p. 357 | DOI:10.1007/s00220-017-2956-0
- Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 1, p. 1 | DOI:10.1017/etds.2015.34
- Statistical properties of the maximal entropy measure for partially hyperbolic attractors, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 4, p. 1060 | DOI:10.1017/etds.2015.86
- The semiclassical zeta function for geodesic flows on negatively curved manifolds, Inventiones mathematicae, Volume 208 (2017) no. 3, p. 851 | DOI:10.1007/s00222-016-0701-5
- Ruelle zeta function at zero for surfaces, Inventiones mathematicae, Volume 210 (2017) no. 1, p. 211 | DOI:10.1007/s00222-017-0727-3
- The Quest for the Ultimate Anisotropic Banach Space, Journal of Statistical Physics, Volume 166 (2017) no. 3-4, p. 525 | DOI:10.1007/s10955-016-1663-0
- Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables, Nonlinearity, Volume 30 (2017) no. 3, p. 1204 | DOI:10.1088/1361-6544/aa5b13
- Complete spectral data for analytic Anosov maps of the torus, Nonlinearity, Volume 30 (2017) no. 7, p. 2667 | DOI:10.1088/1361-6544/aa700f
- Corridengum: Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables (2017Nonlinearity301204), Nonlinearity, Volume 30 (2017) no. 8, p. C4 | DOI:10.1088/1361-6544/aa7768
- Differentiability of thermodynamical quantities in non-uniformly expanding dynamics, Advances in Mathematics, Volume 292 (2016), p. 478 | DOI:10.1016/j.aim.2016.01.017
- Mixing for Some Non-Uniformly Hyperbolic Systems, Annales Henri Poincaré, Volume 17 (2016) no. 1, p. 179 | DOI:10.1007/s00023-015-0399-8
- Pollicott–Ruelle Resonances for Open Systems, Annales Henri Poincaré, Volume 17 (2016) no. 11, p. 3089 | DOI:10.1007/s00023-016-0491-8
- Duality between eigenfunctions and eigendistributions of Ruelle and Koopman operators via an integral kernel, Stochastics and Dynamics, Volume 16 (2016) no. 03, p. 1660011 | DOI:10.1142/s021949371660011x
- Stochastic stability of Pollicott–Ruelle resonances, Nonlinearity, Volume 28 (2015) no. 10, p. 3511 | DOI:10.1088/0951-7715/28/10/3511
- On the spectra of quenched random perturbations of partially expanding maps on the torus, Nonlinearity, Volume 28 (2015) no. 4, p. 951 | DOI:10.1088/0951-7715/28/4/951
- Semiclassical Approach for the Ruelle-Pollicott Spectrum of Hyperbolic Dynamics, Analytic and Probabilistic Approaches to Dynamics in Negative Curvature, Volume 9 (2014), p. 65 | DOI:10.1007/978-3-319-04807-9_2
- Sharp polynomial bounds on the number of Pollicott–Ruelle resonances, Ergodic Theory and Dynamical Systems, Volume 34 (2014) no. 4, p. 1168 | DOI:10.1017/etds.2013.3
- Zeta Functions and Continuous Time Dynamics, Modeling, Dynamics, Optimization and Bioeconomics I, Volume 73 (2014), p. 285 | DOI:10.1007/978-3-319-04849-9_18
- Spectral analysis of hyperbolic systems with singularities, Nonlinearity, Volume 27 (2014) no. 3, p. 379 | DOI:10.1088/0951-7715/27/3/379
- Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 2, p. 225 | DOI:10.1016/j.anihpc.2012.07.004
- Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Annals of Mathematics, Volume 178 (2013) no. 2, p. 385 | DOI:10.4007/annals.2013.178.2.1
- Anosov flows and dynamical zeta functions, Annals of Mathematics, Volume 178 (2013) no. 2, p. 687 | DOI:10.4007/annals.2013.178.2.6
- On the mixing properties of piecewise expanding maps under composition with permutations, Discrete and Continuous Dynamical Systems, Volume 33 (2013) no. 8, p. 3365 | DOI:10.3934/dcds.2013.33.3365
- A footnote on expanding maps, Discrete and Continuous Dynamical Systems, Volume 33 (2013) no. 8, p. 3741 | DOI:10.3934/dcds.2013.33.3741
- Multidimensional expanding maps with singularities: a pedestrian approach, Ergodic Theory and Dynamical Systems, Volume 33 (2013) no. 1, p. 168 | DOI:10.1017/s0143385711000939
- Exponential Decay of Correlations for Piecewise Cone Hyperbolic Contact Flows, Communications in Mathematical Physics, Volume 314 (2012) no. 3, p. 689 | DOI:10.1007/s00220-012-1538-4
- Rare events, exponential hitting times and extremal indices via spectral perturbation†, Dynamical Systems, Volume 27 (2012) no. 1, p. 11 | DOI:10.1080/14689367.2011.653329
- Differentiating potential functions of SRB measures on hyperbolic attractors, Ergodic Theory and Dynamical Systems, Volume 32 (2012) no. 4, p. 1350 | DOI:10.1017/s0143385711000241
- Chaos and Ergodic Theory, Mathematics of Complexity and Dynamical Systems (2012), p. 63 | DOI:10.1007/978-1-4614-1806-1_6
- Intertwining the geodesic flow and the Schrödinger group on hyperbolic surfaces, Mathematische Annalen, Volume 353 (2012) no. 4, p. 1103 | DOI:10.1007/s00208-011-0708-6
- Upper Bound on the Density of Ruelle Resonances for Anosov Flows, Communications in Mathematical Physics, Volume 308 (2011) no. 2, p. 325 | DOI:10.1007/s00220-011-1349-z
- Spectral analysis of the transfer operator for the Lorentz gas, Journal of Modern Dynamics, Volume 5 (2011) no. 4, p. 665 | DOI:10.3934/jmd.2011.5.665
- Entropic fluctuations in statistical mechanics: I. Classical dynamical systems, Nonlinearity, Volume 24 (2011) no. 3, p. 699 | DOI:10.1088/0951-7715/24/3/003
- Spectra of Ruelle transfer operators for Axiom A flows, Nonlinearity, Volume 24 (2011) no. 4, p. 1089 | DOI:10.1088/0951-7715/24/4/005
- Semiclassical origin of the spectral gap for transfer operators of a partially expanding map, Nonlinearity, Volume 24 (2011) no. 5, p. 1473 | DOI:10.1088/0951-7715/24/5/005
- Exponential mixing for smooth hyperbolic suspension flows, Regular and Chaotic Dynamics, Volume 16 (2011) no. 1-2, p. 90 | DOI:10.1134/s1560354711010023
- Functional norms for Young towers, Ergodic Theory and Dynamical Systems, Volume 30 (2010) no. 5, p. 1371 | DOI:10.1017/s0143385709000534
- A Strong Pair Correlation Bound Implies the CLT for Sinai Billiards, Journal of Statistical Physics, Volume 140 (2010) no. 1, p. 154 | DOI:10.1007/s10955-010-9987-7
- Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, Volume 23 (2010) no. 7, p. 1495 | DOI:10.1088/0951-7715/23/7/001
- Almost sure invariance principle for dynamical systems by spectral methods, The Annals of Probability, Volume 38 (2010) no. 4 | DOI:10.1214/10-aop525
- Good Banach spaces for piecewise hyperbolic maps via interpolation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 4, p. 1453 | DOI:10.1016/j.anihpc.2009.01.001
- Chaos and Ergodic Theory, Encyclopedia of Complexity and Systems Science (2009), p. 953 | DOI:10.1007/978-0-387-30440-3_64
- Chaos and Ergodic Theory, Ergodic Theory (2009), p. 633 | DOI:10.1007/978-1-0716-2388-6_64
- Decay of correlations in suspension semi-flows of angle-multiplying maps, Ergodic Theory and Dynamical Systems, Volume 28 (2008) no. 1, p. 291 | DOI:10.1017/s0143385707000430
- Linear response despite critical points, Nonlinearity, Volume 21 (2008) no. 6, p. T81 | DOI:10.1088/0951-7715/21/6/t01
- Unwrapping eigenfunctions to discover the geometry of almost-invariant sets in hyperbolic maps, Physica D: Nonlinear Phenomena, Volume 237 (2008) no. 6, p. 840 | DOI:10.1016/j.physd.2007.11.004
- Random Classical Fidelity, Journal of Statistical Physics, Volume 128 (2007) no. 4, p. 1079 | DOI:10.1007/s10955-007-9338-5
Cité par 97 documents. Sources : Crossref