Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms
[Espaces anisotropes de types Hölder et Sobolev]
Annales de l'Institut Fourier, Tome 57 (2007) no. 1, pp. 127-154.

Nous étudions les propriétés spectrales des opérateurs de transfert associés aux difféomorphismes T:XX sur une variété riemannienne X. Nous supposons qu’il existe un sous-ensemble hyperbolique Ω pour T, contenu dans un voisinage isolant compact V. Nous introduisons d’abord des espaces de Banach de distributions, supportées sur V, qui sont des versions anisotropes des espaces usuels de fonctions Cp, d’une part, et des espaces de Sobolev généralisés Wp,t(V), d’autre part. Nous montrons ensuite que les opérateurs de transfert associés à T et à une fonction poids lisse g s’étendent continûment à ces espaces, et nous donnons des bornes pour les rayons spectraux essentiels de ces extensions, en fonction d’exposants d’hyperbolicité.

We study spectral properties of transfer operators for diffeomorphisms T:XX on a Riemannian manifold X. Suppose that Ω is an isolated hyperbolic subset for T, with a compact isolating neighborhood VX. We first introduce Banach spaces of distributions supported on V, which are anisotropic versions of the usual space of Cp functions Cp(V) and of the generalized Sobolev spaces Wp,t(V), respectively. We then show that the transfer operators associated to T and a smooth weight g extend boundedly to these spaces, and we give bounds on the essential spectral radii of such extensions in terms of hyperbolicity exponents.

DOI : 10.5802/aif.2253
Classification : 37C30, 37D20, 42B25
Keywords: Hyperbolic dynamics, transfer operator, Ruelle operator, spectrum, axiom A, Anosov, Perron-Frobenius, quasi-compact
Mot clés : dynamique hyperbolique, opérateur de transfert, opérateur de Ruelle, spectre, Axiome A, Anosov, Perron-Frobenius, quasi-compacité
Baladi, Viviane 1 ; Tsujii, Masato 2

1 CNRS-UMR 7586 Institut de Mathématiques Jussieu 75252 Paris Cedex 05 (France)
2 Hokkaido University Department of Mathematics Sapporo, Hokkaido (Japan)
@article{AIF_2007__57_1_127_0,
     author = {Baladi, Viviane and Tsujii, Masato},
     title = {Anisotropic {H\"older} and {Sobolev} spaces for hyperbolic diffeomorphisms},
     journal = {Annales de l'Institut Fourier},
     pages = {127--154},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {1},
     year = {2007},
     doi = {10.5802/aif.2253},
     zbl = {1138.37011},
     mrnumber = {2313087},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2253/}
}
TY  - JOUR
AU  - Baladi, Viviane
AU  - Tsujii, Masato
TI  - Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 127
EP  - 154
VL  - 57
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2253/
DO  - 10.5802/aif.2253
LA  - en
ID  - AIF_2007__57_1_127_0
ER  - 
%0 Journal Article
%A Baladi, Viviane
%A Tsujii, Masato
%T Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms
%J Annales de l'Institut Fourier
%D 2007
%P 127-154
%V 57
%N 1
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2253/
%R 10.5802/aif.2253
%G en
%F AIF_2007__57_1_127_0
Baladi, Viviane; Tsujii, Masato. Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Annales de l'Institut Fourier, Tome 57 (2007) no. 1, pp. 127-154. doi : 10.5802/aif.2253. https://www.numdam.org/articles/10.5802/aif.2253/

[1] Avila, A.; Gouëzel, S.; Tsujii, M. Smoothness of solenoidal attractors, Discrete Cont. Dynam. Systems, Volume 15 (2006), pp. 21-35 | DOI | MR | Zbl

[2] Baladi, V. Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, Volume 16, World Scientific, 2000 | MR | Zbl

[3] Baladi, V. Anisotropic Sobolev spaces and dynamical transfer operators: C foliations, S.Kolyada, Y.Manin and T.Ward, Eds., Algebraic and Topological Dynamics, Contemporary Mathematics, Amer. Math. Soc., 2005, pp. 123-136 | MR | Zbl

[4] Blank, M.; Keller, G.; Liverani, C. Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, Volume 15 (2002), pp. 1905-1973 | DOI | MR | Zbl

[5] Fried, D. The flat-trace asymptotics of a uniform system of contractions, Ergodic Theory Dynam. Sys., Volume 15 (1995), pp. 1061-1073 | DOI | MR | Zbl

[6] Fried, D. Meromorphic zeta functions for analytic flows, Comm. Math. Phys., Volume 174 (1995), pp. 161-190 | DOI | MR | Zbl

[7] Gouëzel, S.; Liverani, C. Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Sys., Volume 26 (2006), pp. 189-218 | DOI | MR | Zbl

[8] Gundlach, V. M.; Latushkin, Y. A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces, Ergodic Theory Dynam. Sys., Volume 23 (2003), pp. 175-191 | MR | Zbl

[9] Hennion, H. Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc., Volume 118 (1993), pp. 627-634 | MR | Zbl

[10] Hörmander, L. The analysis of linear partial differential operators. III. Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften, Volume 274, Springer-Verlag, Berlin, 1994 | MR | Zbl

[11] Kitaev, A. Yu. Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness, Nonlinearity, Volume 12 (1999), pp. 141-179 | DOI | MR | Zbl

[12] Paley, J. E.; Littlewood, R. Theorems on Fourier series and power series, Proc. London Math. Soc., Volume 42 (1937), pp. 52-89 | DOI | Zbl

[13] Ruelle, D. The thermodynamic formalism for expanding maps, Comm. Math. Phys., Volume 125 (1989), pp. 239-262 | DOI | MR | Zbl

[14] Rugh, H. H. The correlation spectrum for hyperbolic analytic maps, Nonlinearity, Volume 5 (1992), pp. 1237-1263 | DOI | MR | Zbl

[15] Taylor, M. E. Pseudo differential operators, Lecture Notes in Math., Volume 416, Springer-Verlag, Berlin-New York, 1974 | MR | Zbl

[16] Taylor, M. E. Pseudodifferential operators and nonlinear PDE, Progress in Math., Volume 100, Birkhäuser, Boston, 1991 | MR | Zbl

  • Jin, Long; Tao, Zhongkai Counting Pollicott–Ruelle Resonances for Axiom A Flows, Communications in Mathematical Physics, Volume 406 (2025) no. 2 | DOI:10.1007/s00220-024-05215-z
  • Chaubet, Yann; Dang, Nguyen Viet Dynamical torsion for contact Anosov flows, Analysis PDE, Volume 17 (2024) no. 8, p. 2619 | DOI:10.2140/apde.2024.17.2619
  • Jézéquel, Malo Distribution of Ruelle resonances for real-analytic Anosov diffeomorphisms, Annales Henri Lebesgue, Volume 7 (2024), p. 673 | DOI:10.5802/ahl.208
  • de Hénon, Julia Xénelkis Hénon Maps: A List of Open Problems, Arnold Mathematical Journal, Volume 10 (2024) no. 4, p. 585 | DOI:10.1007/s40598-024-00252-x
  • Fakhari, Abbas; Khalaj, Maryam; Soufi, Mohammad Absolutely Continuous Invariant Measure for Generalized Horseshoe Maps, Bulletin of the Brazilian Mathematical Society, New Series, Volume 55 (2024) no. 2 | DOI:10.1007/s00574-024-00402-x
  • Cekić, Mihajlo; Lefeuvre, Thibault Stability estimates for the holonomy inverse problem, Communications in Partial Differential Equations, Volume 49 (2024) no. 5-6, p. 428 | DOI:10.1080/03605302.2024.2346942
  • BOCKER, CARLOS; BORTOLOTTI, RICARDO; CASTRO, ARMANDO Regularity and linear response formula of the SRB measures for solenoidal attractors, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 10, p. 2782 | DOI:10.1017/etds.2023.121
  • Faure, Frédéric; Tsujii, Masato Fractal Weyl law for the Ruelle spectrum of Anosov flows, Annales Henri Lebesgue, Volume 6 (2023), p. 331 | DOI:10.5802/ahl.167
  • Guedes Bonthonneau, Yannick; Lefeuvre, Thibault Radial source estimates in Hölder-Zygmund spaces for hyperbolic dynamics, Annales Henri Lebesgue, Volume 6 (2023), p. 643 | DOI:10.5802/ahl.175
  • Butterley, Oliver; Canestrari, Giovanni; Jain, Sakshi Discontinuities Cause Essential Spectrum, Communications in Mathematical Physics, Volume 398 (2023) no. 2, p. 627 | DOI:10.1007/s00220-022-04531-6
  • Bahsoun, Wael; Liverani, Carlangelo; Sélley, Fanni M. Globally Coupled Anosov Diffeomorphisms: Statistical Properties, Communications in Mathematical Physics, Volume 400 (2023) no. 3, p. 1791 | DOI:10.1007/s00220-022-04631-3
  • Demers, Mark F.; Liverani, Carlangelo Projective Cones for Sequential Dispersing Billiards, Communications in Mathematical Physics, Volume 401 (2023) no. 1, p. 841 | DOI:10.1007/s00220-023-04657-1
  • TSUJII, Masato VIRTUALLY EXPANDING DYNAMICS, Kyushu Journal of Mathematics, Volume 77 (2023) no. 2, p. 291 | DOI:10.2206/kyushujm.77.291
  • Stoyanov, Luchezar Spectral Properties of Ruelle Transfer Operators for Regular Gibbs Measures and Decay of Correlations for Contact Anosov Flows, Memoirs of the American Mathematical Society, Volume 283 (2023) no. 1404 | DOI:10.1090/memo/1404
  • Castorrini, Roberto; Liverani, Carlangelo Quantitative statistical properties of two-dimensional partially hyperbolic systems, Advances in Mathematics, Volume 409 (2022), p. 108625 | DOI:10.1016/j.aim.2022.108625
  • Aspenberg, Magnus; Baladi, Viviane; Leppänen, Juho; Persson, Tomas On the fractional susceptibility function of piecewise expanding maps, Discrete Continuous Dynamical Systems, Volume 42 (2022) no. 2, p. 679 | DOI:10.3934/dcds.2021133
  • BAHSOUN, WAEL; LIVERANI, CARLANGELO Anosov diffeomorphisms, anisotropic BV spaces and regularity of foliations, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 8, p. 2431 | DOI:10.1017/etds.2021.52
  • Cekić, Mihajlo; Delarue, Benjamin; Dyatlov, Semyon; Paternain, Gabriel P. The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds, Inventiones mathematicae, Volume 229 (2022) no. 1, p. 303 | DOI:10.1007/s00222-022-01108-x
  • Chandramoorthy, Nisha; Jézéquel, Malo Rigorous justification for the space–split sensitivity algorithm to compute linear response in Anosov systems, Nonlinearity, Volume 35 (2022) no. 8, p. 4357 | DOI:10.1088/1361-6544/ac7692
  • Adam, Alexander; Baladi, Viviane Horocycle averages on closed manifolds and transfer operators, Tunisian Journal of Mathematics, Volume 4 (2022) no. 3, p. 387 | DOI:10.2140/tunis.2022.4.387
  • Guillarmou, Colin; de Poyferré, Thibault A paradifferential approach for hyperbolic dynamical systems and applications, Tunisian Journal of Mathematics, Volume 4 (2022) no. 4, p. 673 | DOI:10.2140/tunis.2022.4.673
  • Guillarmou, Colin; Küster, Benjamin Spectral Theory of the Frame Flow on Hyperbolic 3-Manifolds, Annales Henri Poincaré, Volume 22 (2021) no. 11, p. 3565 | DOI:10.1007/s00023-021-01068-7
  • Jézéquel, Malo Global Trace Formula for Ultra-Differentiable Anosov Flows, Communications in Mathematical Physics, Volume 385 (2021) no. 3, p. 1771 | DOI:10.1007/s00220-020-03930-x
  • Dragičević, D.; Hafouta, Y Almost sure invariance principle for random dynamical systems via Gouëzel's approach, Nonlinearity, Volume 34 (2021) no. 10, p. 6773 | DOI:10.1088/1361-6544/ac14a1
  • Castro, Armando Analytical techniques for linear response formula of equilibrium states, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 30 (2020) no. 1 | DOI:10.1063/1.5122810
  • Dang, Nguyen Viet; Guillarmou, Colin; Rivière, Gabriel; Shen, Shu The Fried conjecture in small dimensions, Inventiones mathematicae, Volume 220 (2020) no. 2, p. 525 | DOI:10.1007/s00222-019-00935-9
  • Naud, Frédéric Hyperbolic Dynamics Meet Fourier Analysis, an Invitation to the Book by V. Baladi: “Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps”, Jahresbericht der Deutschen Mathematiker-Vereinigung, Volume 122 (2020) no. 4, p. 263 | DOI:10.1365/s13291-019-00209-6
  • Dang, Nguyen Viet; Rivière, Gabriel SPECTRAL ANALYSIS OF MORSE–SMALE FLOWS I: CONSTRUCTION OF THE ANISOTROPIC SPACES, Journal of the Institute of Mathematics of Jussieu, Volume 19 (2020) no. 5, p. 1409 | DOI:10.1017/s1474748018000439
  • Bilbao, Rafael A; Bioni, Ricardo; Lucena, Rafael Hölder regularity and exponential decay of correlations for a class of piecewise partially hyperbolic maps, Nonlinearity, Volume 33 (2020) no. 12, p. 6790 | DOI:10.1088/1361-6544/aba888
  • Gossart, Luc Flat trace statistics of the transfer operator of a random partially expanding map, Nonlinearity, Volume 33 (2020) no. 7, p. 3303 | DOI:10.1088/1361-6544/ab81ef
  • Cekić, Mihajlo; Paternain, Gabriel P. Resonant spaces for volume-preserving Anosov flows, Pure and Applied Analysis, Volume 2 (2020) no. 4, p. 795 | DOI:10.2140/paa.2020.2.795
  • Faure, Frédéric; Gouëzel, Sébastien; Lanneau, Erwan Ruelle spectrum of linear pseudo-Anosov maps, Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), p. 811 | DOI:10.5802/jep.107
  • Chen, Jianyu; Hu, Huyi The spectral gap for transfer operators of torus extensions over expanding maps, Nonlinearity, Volume 32 (2019) no. 1, p. 356 | DOI:10.1088/1361-6544/aaea87
  • Kesseböhmer, Marc; Schindler, Tanja Strong laws of large numbers for intermediately trimmed Birkhoff sums of observables with infinite mean, Stochastic Processes and their Applications, Volume 129 (2019) no. 10, p. 4163 | DOI:10.1016/j.spa.2018.11.015
  • Dyatlov, Semyon; Guillarmou, Colin Afterword: Dynamical zeta functions for Axiom A flows, Bulletin of the American Mathematical Society, Volume 55 (2018) no. 3, p. 337 | DOI:10.1090/bull/1628
  • Demers, Mark F. A gentle introduction to anisotropic banach spaces, Chaos, Solitons Fractals, Volume 116 (2018), p. 29 | DOI:10.1016/j.chaos.2018.08.028
  • Zhang, Zhiyuan On the Smooth Dependence of SRB Measures for Partially Hyperbolic Systems, Communications in Mathematical Physics, Volume 358 (2018) no. 1, p. 45 | DOI:10.1007/s00220-018-3088-x
  • Baladi, Viviane Introduction, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 1 | DOI:10.1007/978-3-319-77661-3_1
  • Baladi, Viviane Anisotropic Banach spaces defined via cones, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 123 | DOI:10.1007/978-3-319-77661-3_4
  • Baladi, Viviane A variational formula for the essential spectral radius, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 157 | DOI:10.1007/978-3-319-77661-3_5
  • Baladi, Viviane Smooth expanding maps: The spectrum of the transfer operator, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 21 | DOI:10.1007/978-3-319-77661-3_2
  • Baladi, Viviane; Demers, Mark F.; Liverani, Carlangelo Exponential decay of correlations for finite horizon Sinai billiard flows, Inventiones mathematicae, Volume 211 (2018) no. 1, p. 39 | DOI:10.1007/s00222-017-0745-1
  • De Simoi, Jacopo; Liverani, Carlangelo Limit theorems for fast–slow partially hyperbolic systems, Inventiones mathematicae, Volume 213 (2018) no. 3, p. 811 | DOI:10.1007/s00222-018-0798-9
  • Chen, Jianyu; Yang, Yun; Zhang, Hong-Kun Non-stationary Almost Sure Invariance Principle for Hyperbolic Systems with Singularities, Journal of Statistical Physics, Volume 172 (2018) no. 6, p. 1499 | DOI:10.1007/s10955-018-2107-9
  • TSUJII, Masato Exponential mixing for generic volume-preserving Anosov flows in dimension three, Journal of the Mathematical Society of Japan, Volume 70 (2018) no. 2 | DOI:10.2969/jmsj/07027595
  • Baladi, Viviane Characteristic functions as bounded multipliers on anisotropic spaces, Proceedings of the American Mathematical Society, Volume 146 (2018) no. 10, p. 4405 | DOI:10.1090/proc/14107
  • Jin, Long; Zworski, Maciej A Local Trace Formula for Anosov Flows, Annales Henri Poincaré, Volume 18 (2017) no. 1, p. 1 | DOI:10.1007/s00023-016-0504-7
  • Weich, Tobias On the Support of Pollicott–Ruelle Resonanant States for Anosov Flows, Annales Henri Poincaré, Volume 18 (2017) no. 1, p. 37 | DOI:10.1007/s00023-016-0514-5
  • Climenhaga, Vaughn; Pesin, Yakov Building Thermodynamics for Non-uniformly Hyperbolic Maps, Arnold Mathematical Journal, Volume 3 (2017) no. 1, p. 37 | DOI:10.1007/s40598-016-0052-8
  • Zworski, Maciej Mathematical study of scattering resonances, Bulletin of Mathematical Sciences, Volume 7 (2017) no. 1, p. 1 | DOI:10.1007/s13373-017-0099-4
  • Drouot, Alexis Stochastic Stability of Pollicott–Ruelle Resonances, Communications in Mathematical Physics, Volume 356 (2017) no. 2, p. 357 | DOI:10.1007/s00220-017-2956-0
  • ARNOLDI, JEAN FRANCOIS; FAURE, FRÉDÉRIC; WEICH, TOBIAS Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 1, p. 1 | DOI:10.1017/etds.2015.34
  • CASTRO, ARMANDO; NASCIMENTO, TEÓFILO Statistical properties of the maximal entropy measure for partially hyperbolic attractors, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 4, p. 1060 | DOI:10.1017/etds.2015.86
  • Faure, Frédéric; Tsujii, Masato The semiclassical zeta function for geodesic flows on negatively curved manifolds, Inventiones mathematicae, Volume 208 (2017) no. 3, p. 851 | DOI:10.1007/s00222-016-0701-5
  • Dyatlov, Semyon; Zworski, Maciej Ruelle zeta function at zero for surfaces, Inventiones mathematicae, Volume 210 (2017) no. 1, p. 211 | DOI:10.1007/s00222-017-0727-3
  • Baladi, Viviane The Quest for the Ultimate Anisotropic Banach Space, Journal of Statistical Physics, Volume 166 (2017) no. 3-4, p. 525 | DOI:10.1007/s10955-016-1663-0
  • Baladi, Viviane; Kuna, Tobias; Lucarini, Valerio Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables, Nonlinearity, Volume 30 (2017) no. 3, p. 1204 | DOI:10.1088/1361-6544/aa5b13
  • Slipantschuk, J; Bandtlow, O F; Just, W Complete spectral data for analytic Anosov maps of the torus, Nonlinearity, Volume 30 (2017) no. 7, p. 2667 | DOI:10.1088/1361-6544/aa700f
  • Baladi, Viviane; Kuna, Tobias; Lucarini, Valerio Corridengum: Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables (2017Nonlinearity301204), Nonlinearity, Volume 30 (2017) no. 8, p. C4 | DOI:10.1088/1361-6544/aa7768
  • Bomfim, T.; Castro, A.; Varandas, P. Differentiability of thermodynamical quantities in non-uniformly expanding dynamics, Advances in Mathematics, Volume 292 (2016), p. 478 | DOI:10.1016/j.aim.2016.01.017
  • Liverani, Carlangelo; Terhesiu, Dalia Mixing for Some Non-Uniformly Hyperbolic Systems, Annales Henri Poincaré, Volume 17 (2016) no. 1, p. 179 | DOI:10.1007/s00023-015-0399-8
  • Dyatlov, Semyon; Guillarmou, Colin Pollicott–Ruelle Resonances for Open Systems, Annales Henri Poincaré, Volume 17 (2016) no. 11, p. 3089 | DOI:10.1007/s00023-016-0491-8
  • Giulietti, P.; Lopes, A. O.; Pit, V. Duality between eigenfunctions and eigendistributions of Ruelle and Koopman operators via an integral kernel, Stochastics and Dynamics, Volume 16 (2016) no. 03, p. 1660011 | DOI:10.1142/s021949371660011x
  • Dyatlov, Semyon; Zworski, Maciej Stochastic stability of Pollicott–Ruelle resonances, Nonlinearity, Volume 28 (2015) no. 10, p. 3511 | DOI:10.1088/0951-7715/28/10/3511
  • Nakano, Yushi; Wittsten, Jens On the spectra of quenched random perturbations of partially expanding maps on the torus, Nonlinearity, Volume 28 (2015) no. 4, p. 951 | DOI:10.1088/0951-7715/28/4/951
  • Faure, Frédéric; Tsujii, Masato Semiclassical Approach for the Ruelle-Pollicott Spectrum of Hyperbolic Dynamics, Analytic and Probabilistic Approaches to Dynamics in Negative Curvature, Volume 9 (2014), p. 65 | DOI:10.1007/978-3-319-04807-9_2
  • DATCHEV, KIRIL; DYATLOV, SEMYON; ZWORSKI, MACIEJ Sharp polynomial bounds on the number of Pollicott–Ruelle resonances, Ergodic Theory and Dynamical Systems, Volume 34 (2014) no. 4, p. 1168 | DOI:10.1017/etds.2013.3
  • Giulietti, Paolo Zeta Functions and Continuous Time Dynamics, Modeling, Dynamics, Optimization and Bioeconomics I, Volume 73 (2014), p. 285 | DOI:10.1007/978-3-319-04849-9_18
  • Demers, Mark F; Zhang, Hong-Kun Spectral analysis of hyperbolic systems with singularities, Nonlinearity, Volume 27 (2014) no. 3, p. 379 | DOI:10.1088/0951-7715/27/3/379
  • Castro, A.; Varandas, P. Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 2, p. 225 | DOI:10.1016/j.anihpc.2012.07.004
  • Avila, Artur; Gouëzel, Sébastien Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Annals of Mathematics, Volume 178 (2013) no. 2, p. 385 | DOI:10.4007/annals.2013.178.2.1
  • Giulietti, Paolo; Liverani, Carlangelo; Pollicott, Mark Anosov flows and dynamical zeta functions, Annals of Mathematics, Volume 178 (2013) no. 2, p. 687 | DOI:10.4007/annals.2013.178.2.6
  • Byott, Nigel P.; Holland, Mark; Zhang, Yiwei On the mixing properties of piecewise expanding maps under composition with permutations, Discrete and Continuous Dynamical Systems, Volume 33 (2013) no. 8, p. 3365 | DOI:10.3934/dcds.2013.33.3365
  • Liverani, Carlangelo A footnote on expanding maps, Discrete and Continuous Dynamical Systems, Volume 33 (2013) no. 8, p. 3741 | DOI:10.3934/dcds.2013.33.3741
  • LIVERANI, CARLANGELO Multidimensional expanding maps with singularities: a pedestrian approach, Ergodic Theory and Dynamical Systems, Volume 33 (2013) no. 1, p. 168 | DOI:10.1017/s0143385711000939
  • Baladi, Viviane; Liverani, Carlangelo Exponential Decay of Correlations for Piecewise Cone Hyperbolic Contact Flows, Communications in Mathematical Physics, Volume 314 (2012) no. 3, p. 689 | DOI:10.1007/s00220-012-1538-4
  • Keller, Gerhard Rare events, exponential hitting times and extremal indices via spectral perturbation†, Dynamical Systems, Volume 27 (2012) no. 1, p. 11 | DOI:10.1080/14689367.2011.653329
  • JIANG, MIAOHUA Differentiating potential functions of SRB measures on hyperbolic attractors, Ergodic Theory and Dynamical Systems, Volume 32 (2012) no. 4, p. 1350 | DOI:10.1017/s0143385711000241
  • Buzzi, Jérôme Chaos and Ergodic Theory, Mathematics of Complexity and Dynamical Systems (2012), p. 63 | DOI:10.1007/978-1-4614-1806-1_6
  • Anantharaman, Nalini; Zelditch, Steve Intertwining the geodesic flow and the Schrödinger group on hyperbolic surfaces, Mathematische Annalen, Volume 353 (2012) no. 4, p. 1103 | DOI:10.1007/s00208-011-0708-6
  • Faure, Frédéric; Sjöstrand, Johannes Upper Bound on the Density of Ruelle Resonances for Anosov Flows, Communications in Mathematical Physics, Volume 308 (2011) no. 2, p. 325 | DOI:10.1007/s00220-011-1349-z
  • F. Demers, Mark; Zhang, Hong-Kun Spectral analysis of the transfer operator for the Lorentz gas, Journal of Modern Dynamics, Volume 5 (2011) no. 4, p. 665 | DOI:10.3934/jmd.2011.5.665
  • Jakšić, V; Pillet, C-A; Rey-Bellet, L Entropic fluctuations in statistical mechanics: I. Classical dynamical systems, Nonlinearity, Volume 24 (2011) no. 3, p. 699 | DOI:10.1088/0951-7715/24/3/003
  • Stoyanov, Luchezar Spectra of Ruelle transfer operators for Axiom A flows, Nonlinearity, Volume 24 (2011) no. 4, p. 1089 | DOI:10.1088/0951-7715/24/4/005
  • Faure, Frédéric Semiclassical origin of the spectral gap for transfer operators of a partially expanding map, Nonlinearity, Volume 24 (2011) no. 5, p. 1473 | DOI:10.1088/0951-7715/24/5/005
  • Field, Michael J. Exponential mixing for smooth hyperbolic suspension flows, Regular and Chaotic Dynamics, Volume 16 (2011) no. 1-2, p. 90 | DOI:10.1134/s1560354711010023
  • DEMERS, MARK F. Functional norms for Young towers, Ergodic Theory and Dynamical Systems, Volume 30 (2010) no. 5, p. 1371 | DOI:10.1017/s0143385709000534
  • Stenlund, Mikko A Strong Pair Correlation Bound Implies the CLT for Sinai Billiards, Journal of Statistical Physics, Volume 140 (2010) no. 1, p. 154 | DOI:10.1007/s10955-010-9987-7
  • Tsujii, Masato Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, Volume 23 (2010) no. 7, p. 1495 | DOI:10.1088/0951-7715/23/7/001
  • Gouëzel, Sébastien Almost sure invariance principle for dynamical systems by spectral methods, The Annals of Probability, Volume 38 (2010) no. 4 | DOI:10.1214/10-aop525
  • Baladi, Viviane; Gouëzel, Sébastien Good Banach spaces for piecewise hyperbolic maps via interpolation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 4, p. 1453 | DOI:10.1016/j.anihpc.2009.01.001
  • Buzzi, Jérôme Chaos and Ergodic Theory, Encyclopedia of Complexity and Systems Science (2009), p. 953 | DOI:10.1007/978-0-387-30440-3_64
  • Buzzi, Jérôme Chaos and Ergodic Theory, Ergodic Theory (2009), p. 633 | DOI:10.1007/978-1-0716-2388-6_64
  • TSUJII, MASATO Decay of correlations in suspension semi-flows of angle-multiplying maps, Ergodic Theory and Dynamical Systems, Volume 28 (2008) no. 1, p. 291 | DOI:10.1017/s0143385707000430
  • Baladi, Viviane Linear response despite critical points, Nonlinearity, Volume 21 (2008) no. 6, p. T81 | DOI:10.1088/0951-7715/21/6/t01
  • Froyland, Gary Unwrapping eigenfunctions to discover the geometry of almost-invariant sets in hyperbolic maps, Physica D: Nonlinear Phenomena, Volume 237 (2008) no. 6, p. 840 | DOI:10.1016/j.physd.2007.11.004
  • Liverani, C.; Marie, Ph.; Vaienti, S. Random Classical Fidelity, Journal of Statistical Physics, Volume 128 (2007) no. 4, p. 1079 | DOI:10.1007/s10955-007-9338-5

Cité par 97 documents. Sources : Crossref