Thom polynomials and Schur functions: the singularities I 2,2 (-)
[Polynômes de Thom et fonctions de Schur : les singularités I 2,2 (-)]
Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1487-1508.

Nous présentons les polynômes de Thom pour les singularités I 2,2 associées aux applications ( ,0)( +k ,0) de paramètre k0. Nos calculs combinent la caractérisation des polynômes de Thom via la « méthode des équations restreintes » de Rimanyi et al. avec les techniques des fonctions de Schur.

We give the Thom polynomials for the singularities I 2,2 associated with maps ( ,0)( +k ,0) with parameter k0. Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.

DOI : https://doi.org/10.5802/aif.2302
Classification : 05E05,  14N10,  57R45
Mots clés : polynômes de Thom, singularités, fonctions de Schur
@article{AIF_2007__57_5_1487_0,
     author = {Pragacz, Piotr},
     title = {Thom polynomials and {Schur} functions: the singularities $I_{2,2}(-)$},
     journal = {Annales de l'Institut Fourier},
     pages = {1487--1508},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {5},
     year = {2007},
     doi = {10.5802/aif.2302},
     mrnumber = {2364137},
     zbl = {1126.05099},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2302/}
}
TY  - JOUR
AU  - Pragacz, Piotr
TI  - Thom polynomials and Schur functions: the singularities $I_{2,2}(-)$
JO  - Annales de l'Institut Fourier
PY  - 2007
DA  - 2007///
SP  - 1487
EP  - 1508
VL  - 57
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2302/
UR  - https://www.ams.org/mathscinet-getitem?mr=2364137
UR  - https://zbmath.org/?q=an%3A1126.05099
UR  - https://doi.org/10.5802/aif.2302
DO  - 10.5802/aif.2302
LA  - en
ID  - AIF_2007__57_5_1487_0
ER  - 
Pragacz, Piotr. Thom polynomials and Schur functions: the singularities $I_{2,2}(-)$. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1487-1508. doi : 10.5802/aif.2302. http://archive.numdam.org/articles/10.5802/aif.2302/

[1] Arnold, V.; Vasilev, V.; Goryunov, V.; Lyashko, O. Singularities. Local and global theory, Enc. Math. Sci., Volume 6 (Dynamical Systems VI), Springer, 1993 | Zbl 0787.58001

[2] Berczi, G.; Feher, L.; Rimanyi, R. Expressions for resultants coming from the global theory of singularities, Topics in algebraic and noncommutative geometry, (L.McEwan et al. eds.), Contemporary Math., Volume 324, Amer. Math. Soc., 2003, pp. 63-69 | MR 1986113 | Zbl 1052.57043

[3] Berele, A.; Regev, A. Hook Young diagrams with applications to combinatorics and to representation theory of Lie superalgebras, Adv. in Math., Volume 64 (1987), pp. 118-175 | Article | MR 884183 | Zbl 0617.17002

[4] Damon, J. Thom polynomials for contact singularities (1972) (Ph. D. Thesis)

[5] Du Plessis, A.; Wall, C. T. C. The geometry of topological stability, Oxford Math. Monograph, 1995 | MR 1408432 | Zbl 0870.57001

[6] Feher, L.; Komuves, B. On second order Thom-Boardman singularities, Fund. Math., Volume 191 (2006), pp. 249-264 | Article | MR 2278625 | Zbl 05115119

[7] Fehér, L.; M., László; Rimányi, R. Calculation of Thom polynomials and other cohomological obstructions for group actions, Real and complex singularities (Contemp. Math.), Volume 354, Amer. Math. Soc., 2004, pp. 69-93 | MR 2087805 | Zbl 1074.32008

[8] Feher, L.; Rimányi, R. On the structure of Thom polynomials of singularities (Preprint, September 2005)

[9] Fulton, William; Pragacz, Piotr Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, 1689, Springer-Verlag, Berlin, 1998 (Appendix J by the authors in collaboration with I. Ciocan-Fontanine) | MR 1639468 | Zbl 0913.14016

[10] Jänich, K. Symmetry properties of singularities of C -functions, Math. Ann., Volume 238 (1979), pp. 147-156 | Article | MR 512820 | Zbl 0373.58002

[11] Kazarian, M. E. (Letter to the author, dated July 4, 2006)

[12] Kazarian, M. E. Characteristic classes of singularity theory, The Arnold-Gelfand mathematical seminars: Geometry and singularity theory (1997), pp. 325-340 | MR 1429898 | Zbl 0872.57034

[13] Kazarian, M. E. Classifying spaces of singularities and Thom polynomials, New developments in singularity theory, NATO Sci. Ser. II Math. Phys. Chem., Volume 21, Kluwer Acad. Publ., Dordrecht, 2001, pp. 117-134 | MR 1849306 | Zbl 0991.58010

[14] Kleiman, S. The enumerative theory of singularities, Real and complex singularities, Oslo 1976 (P. Holm ed.) (1978), pp. 297-396 | MR 568897 | Zbl 0385.14018

[15] Laksov, D.; Lascoux, A.; Thorup, A. On Giambelli’s theorem for complete correlations, Acta Math., Volume 162 (1989), pp. 143-199 | Article | Zbl 0695.14023

[16] Lascoux, A. Symmetric functions and combinatorial operators on polynomials, CBMS/AMS Lectures Notes, Volume 99, Providence, 2003 | MR 2017492 | Zbl 1039.05066

[17] Lascoux, A.; Schützenberger, M.-P. Formulaire raisonné de fonctions symétriques, Université Paris 7, 1985

[18] Lascoux, Alain Addition of ±1: application to arithmetic, Sém. Lothar. Combin., Volume 52 (2004/05), pp. Art. B52a, 9pp. (electronic) | MR 2081105 | Zbl 02171950

[19] Macdonald, I. G. Symmetric functions and Hall-Littlewood polynomials, Oxford Math. Monographs, Amer. Math. Soc., 1995 (2nd ed.)

[20] Ozturk, O. On Thom polynomials for A 4 (-) via Schur functions Preprint, IMPAN Warszawa 2006 (670), to appear in Serdica Math.J.

[21] Porteous, I. Simple singularities of maps, Proc. Liverpool Singularities I, Springer Lecture Notes in Math., Volume 192, Springer, 1971, pp. 286-307 | MR 293646 | Zbl 0221.57016

[22] Pragacz, P. Thom polynomials and Schur functions I (math.AG/0509234)

[23] Pragacz, P. Thom polynomials and Schur functions: the singularities A 3 (-) (in preparation)

[24] Pragacz, P. Thom polynomials and Schur functions: towards the singularities A i (-) Preprint MPIM Bonn 2006 (139)

[25] Pragacz, P. Note on elimination theory, Indagationes Math., Volume 49 (1987), pp. 215-221 | Article | MR 898165 | Zbl 0632.12002

[26] Pragacz, P. Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup., Volume 21 (1988), pp. 413-454 | Numdam | MR 974411 | Zbl 0687.14043

[27] Pragacz, P. Algebro-geometric applications of Schur S- and Q-polynomials, Topics in invariant theory, Séminaire d’Algèbre Dubreil-Malliavin 1989-1990 (M.-P. Malliavin ed.), Springer Lecture Notes in Math., Volume 1478, Springer, 1991, pp. 130-191 | Zbl 0783.14031

[28] Pragacz, P. Symmetric polynomials and divided differences in formulas of intersection theory, Parameter spaces (P. Pragacz ed.), Volume 36, Banach Center Publications, 1996, pp. 125-177 | MR 1481485 | Zbl 0851.05094

[29] Pragacz, P.; Thorup, A. On a Jacobi-Trudi identity for supersymmetric polynomials, Adv. in Math., Volume 95 (1992), pp. 8-17 | Article | MR 1176151 | Zbl 0774.05101

[30] Pragacz, P.; Weber, A. Positivity of Schur function expansions of Thom polynomials Preprint, math.AG/0605308 and MPIM Bonn 2006 (60), to appear in Fund. Math.

[31] Rimanyi, R. Thom polynomials, symmetries and incidences of singularities, Inv. Math., Volume 143 (2001), pp. 499-521 | Article | MR 1817643 | Zbl 0985.32012

[32] Rimanyi, R.; Szücs, A. Generalized Pontrjagin-Thom construction for maps with singularities, Topology, Volume 37 (1998), pp. 1177-1191 | Article | MR 1632908 | Zbl 0924.57035

[33] Schubert, H. Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Raüme zweiten Grades in n Dimensionen, Math. Ann., Volume 45 (1894), pp. 153-206 | Article | MR 1510859

[34] Stembridge, J. A characterization of supersymmetric polynomials, J. Algebra, Volume 95 (1985), pp. 439-444 | Article | MR 801279 | Zbl 0573.17004

[35] Thom, R. Les singularités des applications différentiables, Ann. Inst. Fourier, Volume 6 (1955–56), pp. 43-87 | Article | Numdam | MR 87149 | Zbl 0075.32104

[36] Wall, C. T. C. A second note on symmetry of singularities, Bull. London Math. Soc., Volume 12 (1980), pp. 347-354 | Article | MR 587705 | Zbl 0424.58006

Cité par Sources :