The space of Kähler metrics in a fixed Kähler class on a projective Kähler manifold is an infinite dimensional symmetric space whose geodesics are solutions of a homogeneous complex Monge-Ampère equation in , where is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials of may be approximated in a weak sense by geodesics of the finite dimensional symmetric space of Bergman metrics of height . In this article we prove that in in the case of toric Kähler metrics on .
L’espace des métriques de Kähler dans une classe donnée sur une variété projective kählérienne est un espace symétrique de dimension infinie dont les géodésiques sont des solutions d’une équation Monge-Ampère complexe homogène sur , ou . Phong-Sturm ont prouvé que les géodésiques Monge-Ampère des potentiels kählériens de peuvent être approximées dans un sens faible par géodésiques de l’espace symétrique de métriques de Bergman de hauteur . Le but de cet article est de prouver que dans dans le cas des métriques toriques sur .
Keywords: Bergman metric, Monge-Ampère equation, Bergman-Szegö kernel, toric metric, Kähler potential, symplectic potential
Mot clés : métrique de Bergman, équation Monge-Ampère, noyau de Bergman-Szegö, métrique torique, potential kählérien, potential symplectique
@article{AIF_2007__57_7_2209_0, author = {Song, Jian and Zelditch, Steve}, title = {Convergence of {Bergman} geodesics on $\mathbf{CP}^1$}, journal = {Annales de l'Institut Fourier}, pages = {2209--2237}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {7}, year = {2007}, doi = {10.5802/aif.2332}, zbl = {1144.53089}, mrnumber = {2394541}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2332/} }
TY - JOUR AU - Song, Jian AU - Zelditch, Steve TI - Convergence of Bergman geodesics on $\mathbf{CP}^1$ JO - Annales de l'Institut Fourier PY - 2007 SP - 2209 EP - 2237 VL - 57 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2332/ DO - 10.5802/aif.2332 LA - en ID - AIF_2007__57_7_2209_0 ER -
%0 Journal Article %A Song, Jian %A Zelditch, Steve %T Convergence of Bergman geodesics on $\mathbf{CP}^1$ %J Annales de l'Institut Fourier %D 2007 %P 2209-2237 %V 57 %N 7 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2332/ %R 10.5802/aif.2332 %G en %F AIF_2007__57_7_2209_0
Song, Jian; Zelditch, Steve. Convergence of Bergman geodesics on $\mathbf{CP}^1$. Annales de l'Institut Fourier, Volume 57 (2007) no. 7, pp. 2209-2237. doi : 10.5802/aif.2332. http://archive.numdam.org/articles/10.5802/aif.2332/
[1] Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001) (Fields Inst. Commun.), Volume 35, Amer. Math. Soc., Providence, RI, 2003, pp. 1-24 | MR | Zbl
[2] Infinite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 2 (2003) no. 4, pp. 617-630 | Numdam | MR
[3] Positivity of direct image bundles and convexity on the space of Kähler metrics (preprint, arxiv: math.CV/0608385)
[4] Partition function zeros at first-order phase transitions: a general analysis, Comm. Math. Phys., Volume 251 (2004) no. 1, pp. 79-131 | DOI | MR | Zbl
[5] Extremal Kähler metrics, Seminar on Differential Geometry (Ann. of Math. Stud.), Volume 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 259-290 | MR | Zbl
[6] Geometry of Kähler metrics and foliations by discs (preprint, math.DG/0409433)
[7] The space of Kähler metrics, J. Differential Geom., Volume 56 (2000) no. 2, pp. 189-234 | MR | Zbl
[8] Some numerical results in complex differential geometry (preprint, math.DG/0512625)
[9] Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar (Amer. Math. Soc. Transl. Ser. 2), Volume 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13-33 | MR | Zbl
[10] Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001) no. 3, pp. 479-522 | MR | Zbl
[11] Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom., Volume 1 (2002) no. 2, pp. 171-196 | MR | Zbl
[12] Scalar curvature and stability of toric varieties, J. Differential Geom., Volume 62 (2002) no. 2, pp. 289-349 | MR | Zbl
[13] Entropy, large deviations, and statistical mechanics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 271, Springer-Verlag, New York, 1985 | MR | Zbl
[14] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993 (, The William H. Roever Lectures in Geometry) | MR | Zbl
[15] On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett., Volume 6 (1999) no. 5-6, pp. 547-555 | MR | Zbl
[16] Kähler structures on toric varieties, J. Differential Geom., Volume 40 (1994) no. 2, pp. 285-309 | MR | Zbl
[17] The analysis of linear partial differential operators. I, Springer Study Edition, Springer-Verlag, Berlin, 1990 (Distribution theory and Fourier analysis) | MR | Zbl
[18] Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math., Volume 24 (1987) no. 2, pp. 227-252 | MR | Zbl
[19] The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math., Volume 166 (2006) no. 1, pp. 125-149 | DOI | MR | Zbl
[20] Complex Monge-Ampère and symplectic manifolds, Amer. J. Math., Volume 114 (1992) no. 3, pp. 495-550 | DOI | MR | Zbl
[21] The homogeneous complex Monge-Ampère equation and the infinite-dimensional versions of classic symmetric spaces, The Gelfand Mathematical Seminars, 1993–1995 (Gelfand Math. Sem.), Birkhäuser Boston, Boston, MA, 1996, pp. 225-242 | MR | Zbl
[22] Harmonic analysis on toric varieties, Explorations in complex and Riemannian geometry (Contemp. Math.), Volume 332, Amer. Math. Soc., Providence, RI, 2003, pp. 267-286 | MR | Zbl
[23] Distribution laws for integrable eigenfunctions, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 5, pp. 1497-1546 | DOI | Numdam | MR | Zbl
[24] The -invariant on toric Fano manifolds, Amer. J. Math., Volume 127 (2005) no. 6, pp. 1247-1259 | DOI | MR | Zbl
[25] Bergman metrics and geodesics in the space of Kähler metrics on toric varieties (preprint, arXiv: 0707.3082)
[26] On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990) no. 1, pp. 99-130 | MR | Zbl
[27] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | MR | Zbl
[28] Open problems in geometry, Chern—a great geometer of the twentieth century, Int. Press, Hong Kong, 1992, pp. 275-319 | MR
[29] Bernstein polynomials, Bergman kernels and toric Kähler varieties (preprint, arXiv: 0705.2879)
[30] Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices (1998) no. 6, pp. 317-331 | DOI | MR | Zbl
Cited by Sources: