Soit une variété riemannienne complète à courbure de Ricci bornée inférieurement et qui vérifie l’inégalité Sobolev de dimension . Si est une variété riemannienne complète isométrique à en dehors d’un compact et si alors lorsque la transformée de Riesz est bornée sur elle est également bornée sur .
Assume that is a complete Riemannian manifold with Ricci curvature bounded from below and that satisfies a Sobolev inequality of dimension . Let be a complete Riemannian manifold isometric at infinity to and let . The boundedness of the Riesz transform of then implies the boundedness of the Riesz transform of
Keywords: Riesz transform, Sobolev inequalities
Mot clés : transformée de Riesz, inégalités de Sobolev
@article{AIF_2007__57_7_2329_0, author = {Carron, Gilles}, title = {Riesz transforms on connected sums}, journal = {Annales de l'Institut Fourier}, pages = {2329--2343}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {7}, year = {2007}, doi = {10.5802/aif.2334}, zbl = {1139.58020}, mrnumber = {2394543}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2334/} }
TY - JOUR AU - Carron, Gilles TI - Riesz transforms on connected sums JO - Annales de l'Institut Fourier PY - 2007 SP - 2329 EP - 2343 VL - 57 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2334/ DO - 10.5802/aif.2334 LA - en ID - AIF_2007__57_7_2329_0 ER -
Carron, Gilles. Riesz transforms on connected sums. Annales de l'Institut Fourier, Tome 57 (2007) no. 7, pp. 2329-2343. doi : 10.5802/aif.2334. http://archive.numdam.org/articles/10.5802/aif.2334/
[1] An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Canad. J. Math., Volume 44 (1992), pp. 691-727 | DOI | MR | Zbl
[2] Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J., Volume 65 (1992) no. 2, pp. 257-297 | DOI | MR | Zbl
[3] Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Lecture Notes in Math., Volume 1247 (1987), pp. 137-172 (Séminaire de Probabilités, XXI) | DOI | Numdam | MR | Zbl
[4] Une suite exacte en -cohomologie, Duke Math. J., Volume 95 (1998), pp. 343-372 | DOI | MR | Zbl
[5] Riesz transform for manifolds with Euclidean ends (to appear in Duke Math. Journal) | Zbl
[6] Riesz transform and perturbation (2006) (preprint) | MR | Zbl
[7] Riesz transforms for , Trans. Amer. Math. Soc., Volume 351 (1999), pp. 1151-1169 | DOI | MR | Zbl
[8] Riesz transform and related inequalities on non-compact Riemannian manifolds, Comm. in Pure and Appl. Math., Volume 56 (2003) no. 12, pp. 1728-1751 | DOI | MR | Zbl
[9] Analysis and geometry on groups, Cambridge Tracts in Mathematics, Volume 100, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[10] Pointwise bounds on the space and time derivatives of heat kernels, Operator Theory, Volume 21 (1989) no. 2, pp. 367-378 | MR | Zbl
[11] Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana, Volume 10 (1994) no. 2, pp. 395-452 | Zbl
[12] Heat kernel on connected sums of Riemannian manifolds, Math. Res. Lett., Volume 6 (1999) no. 3-4, pp. 307-321 | Zbl
[13] Stability results for Harnack inequalities, Ann. Inst. Fourier, Volume 55 (2005) no. 3, pp. 825-890 | DOI | Numdam | Zbl
[14] Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius, Amer. J. Math., Volume 118 (1996) no. 2, pp. 291-300 | DOI | MR | Zbl
[15] Fractional powers of operators, Pacific J. Math., Volume 19 (1966), pp. 285-346 | MR | Zbl
[16] La transformation de Riesz sur les variétés coniques, J. Funct. Anal., Volume 168 (1999) no. 1, pp. 145-238 | DOI | MR | Zbl
[17] Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive, J. Funct. Anal., Volume 61 (1985) no. 2, pp. 164-201 | DOI | MR | Zbl
[18] Hardy-Littlewood theory for semigroups, J. Funct. Anal., Volume 63 (1985) no. 2, pp. 240-260 | DOI | MR | Zbl
Cité par Sources :