Riemann-Roch theorem for higher bivariant K-functors
[Théorème de Riemann-Roch pour les K-foncteurs supérieurs bivariants]
Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 571-601.

On définie une transformation naturelle de type Riemann-Roch entre les K-théories algébrique et topologique supérieures bivariantes dans la catégorie des espaces complexes.

One defines a Riemann-Roch natural transformation from algebraic to topological higher bivariant K-theory in the category of complex spaces.

DOI : 10.5802/aif.2361
Classification : 19L10, 19D99
Keywords: Perfect sheaf, classifying space of the category, K-groups
Mot clés : faisceau parfait, espace classifié de la catégorie, K-groupes
Levy, Roni N. 1

1 Sofia University Faculty of Mathematics and Informatics Bd. J.Bourchier 5 Sofia 1164 (Bulgaria)
@article{AIF_2008__58_2_571_0,
     author = {Levy, Roni N.},
     title = {Riemann-Roch theorem for higher bivariant {K-functors}},
     journal = {Annales de l'Institut Fourier},
     pages = {571--601},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {2},
     year = {2008},
     doi = {10.5802/aif.2361},
     zbl = {1164.19001},
     mrnumber = {2410383},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2361/}
}
TY  - JOUR
AU  - Levy, Roni N.
TI  - Riemann-Roch theorem for higher bivariant K-functors
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 571
EP  - 601
VL  - 58
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2361/
DO  - 10.5802/aif.2361
LA  - en
ID  - AIF_2008__58_2_571_0
ER  - 
%0 Journal Article
%A Levy, Roni N.
%T Riemann-Roch theorem for higher bivariant K-functors
%J Annales de l'Institut Fourier
%D 2008
%P 571-601
%V 58
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2361/
%R 10.5802/aif.2361
%G en
%F AIF_2008__58_2_571_0
Levy, Roni N. Riemann-Roch theorem for higher bivariant K-functors. Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 571-601. doi : 10.5802/aif.2361. http://archive.numdam.org/articles/10.5802/aif.2361/

[1] Angeniol, B.; Lejeune-Jalabert, M. Calcul différentiel et classes caractéristiques en géométrie algébrique (1985) (Prepublication de l’Institut Fourier, Grenoble) | Zbl

[2] Atiyah, M. F. K-theory, Harvard Univ., Cambridge, Mass., 1965

[3] Baum, P.; Fulton, W.; Macpherson, R. Riemann-Roch and topological K-theory for singular varieties, Acta Math., Volume 143 (1979), pp. 155-192 | DOI | MR | Zbl

[4] Forster, O.; Knorr, K. Ein Beweis des grauertsche Bildgarbensatzes nach ideen von B. Malgrange, Manuscripta Math., Volume 5 (1971), pp. 19-44 | DOI | EuDML | MR | Zbl

[5] Fulton, William; MacPherson, Robert Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc., Volume 31 (1981) no. 243, pp. vi+165 | MR | Zbl

[6] Gillet, H. Riemann-Roch theorems for higher algebraic K-theory, Adv. Math., Volume 40 (1981), pp. 203-289 | DOI | MR | Zbl

[7] Gillet, H. Comparing algebraic and topological K-theory, Lect. Notes in Math., Volume 1491 (1992), pp. 54-99

[8] Godement, R. Topologie algebraique et theorie de faisceaux, Hermann, Paris, 1958 | MR | Zbl

[9] Levy, R. Riemann-Roch theorem for complex spaces, Acta Mathematica, Volume 158 (1987), pp. 149-188 | DOI | MR | Zbl

[10] Quillen, D. Higher algebraic K-theory I, Springer Lect. Notes in Math., Volume 341 (1972), pp. 85-148 | DOI | MR | Zbl

[11] Thomason, R. W.; Trobaugh, T. Higher algebraic K-theory of schemes and of derived categories, The Grothendieck festschrift III, Progress in Math. v., Volume 88 (1990), pp. 247-437 (Birkhauser) | DOI | MR

[12] Waldhausen, F. Algebraic K-theory of spaces, Springer Lect. Notes in Math., Volume 1126 (1985), pp. 318-419 | DOI | MR | Zbl

Cité par Sources :