On définie une transformation naturelle de type Riemann-Roch entre les K-théories algébrique et topologique supérieures bivariantes dans la catégorie des espaces complexes.
One defines a Riemann-Roch natural transformation from algebraic to topological higher bivariant K-theory in the category of complex spaces.
Keywords: Perfect sheaf, classifying space of the category, K-groups
Mot clés : faisceau parfait, espace classifié de la catégorie, K-groupes
@article{AIF_2008__58_2_571_0, author = {Levy, Roni N.}, title = {Riemann-Roch theorem for higher bivariant {K-functors}}, journal = {Annales de l'Institut Fourier}, pages = {571--601}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {2}, year = {2008}, doi = {10.5802/aif.2361}, zbl = {1164.19001}, mrnumber = {2410383}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2361/} }
TY - JOUR AU - Levy, Roni N. TI - Riemann-Roch theorem for higher bivariant K-functors JO - Annales de l'Institut Fourier PY - 2008 SP - 571 EP - 601 VL - 58 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2361/ DO - 10.5802/aif.2361 LA - en ID - AIF_2008__58_2_571_0 ER -
%0 Journal Article %A Levy, Roni N. %T Riemann-Roch theorem for higher bivariant K-functors %J Annales de l'Institut Fourier %D 2008 %P 571-601 %V 58 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2361/ %R 10.5802/aif.2361 %G en %F AIF_2008__58_2_571_0
Levy, Roni N. Riemann-Roch theorem for higher bivariant K-functors. Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 571-601. doi : 10.5802/aif.2361. http://archive.numdam.org/articles/10.5802/aif.2361/
[1] Calcul différentiel et classes caractéristiques en géométrie algébrique (1985) (Prepublication de l’Institut Fourier, Grenoble) | Zbl
[2] K-theory, Harvard Univ., Cambridge, Mass., 1965
[3] Riemann-Roch and topological K-theory for singular varieties, Acta Math., Volume 143 (1979), pp. 155-192 | DOI | MR | Zbl
[4] Ein Beweis des grauertsche Bildgarbensatzes nach ideen von B. Malgrange, Manuscripta Math., Volume 5 (1971), pp. 19-44 | DOI | EuDML | MR | Zbl
[5] Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc., Volume 31 (1981) no. 243, pp. vi+165 | MR | Zbl
[6] Riemann-Roch theorems for higher algebraic K-theory, Adv. Math., Volume 40 (1981), pp. 203-289 | DOI | MR | Zbl
[7] Comparing algebraic and topological K-theory, Lect. Notes in Math., Volume 1491 (1992), pp. 54-99
[8] Topologie algebraique et theorie de faisceaux, Hermann, Paris, 1958 | MR | Zbl
[9] Riemann-Roch theorem for complex spaces, Acta Mathematica, Volume 158 (1987), pp. 149-188 | DOI | MR | Zbl
[10] Higher algebraic K-theory I, Springer Lect. Notes in Math., Volume 341 (1972), pp. 85-148 | DOI | MR | Zbl
[11] Higher algebraic K-theory of schemes and of derived categories, The Grothendieck festschrift III, Progress in Math. v., Volume 88 (1990), pp. 247-437 (Birkhauser) | DOI | MR
[12] Algebraic K-theory of spaces, Springer Lect. Notes in Math., Volume 1126 (1985), pp. 318-419 | DOI | MR | Zbl
Cité par Sources :