Zeros of eigenfunctions of some anharmonic oscillators
[Zéros des fonctions propres de certains oscillateurs anharmoniques]
Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 603-624.

On étudie les zéros complexes des fonctions propres d’opérateurs différentiels linéaires du second ordre avec des potentiels polynomiaux réels pairs. Pour les potentiels de degré 4, on montre que tous les zéros de toutes les fonctions propres appartiennent à la réunion de l’axe réel et l’axe imaginaire. Pour les potentiels de degré 6, on classifie les fonctions propres ayant un nombre fini de zéros et on montre que, dans ce cas aussi, tous les zéros sont réels ou imaginaires purs.

We study complex zeros of eigenfunctions of second order linear differential operators with real even polynomial potentials. For potentials of degree 4, we prove that all zeros of all eigenfunctions belong to the union of the real and imaginary axes. For potentials of degree 6, we classify eigenfunctions with finitely many zeros, and show that in this case too, all zeros are real or pure imaginary.

DOI : 10.5802/aif.2362
Classification : 34L40, 81Q10, 30D99
Keywords: Eigenfunctions, meromorphic functions, distribution of zeros
Mot clés : fonctions propres, fonctions méromorphes, distribution de zéros
Eremenko, Alexandre 1 ; Gabrielov, Andrei 1 ; Shapiro, Boris 2

1 Purdue University West Lafayette, IN 47907-2067 (USA)
2 Stockholm University Stockholm, S-10691 (Sweden)
@article{AIF_2008__58_2_603_0,
     author = {Eremenko, Alexandre and Gabrielov, Andrei and Shapiro, Boris},
     title = {Zeros of eigenfunctions of some anharmonic oscillators},
     journal = {Annales de l'Institut Fourier},
     pages = {603--624},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {2},
     year = {2008},
     doi = {10.5802/aif.2362},
     zbl = {1155.34043},
     mrnumber = {2410384},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2362/}
}
TY  - JOUR
AU  - Eremenko, Alexandre
AU  - Gabrielov, Andrei
AU  - Shapiro, Boris
TI  - Zeros of eigenfunctions of some anharmonic oscillators
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 603
EP  - 624
VL  - 58
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2362/
DO  - 10.5802/aif.2362
LA  - en
ID  - AIF_2008__58_2_603_0
ER  - 
%0 Journal Article
%A Eremenko, Alexandre
%A Gabrielov, Andrei
%A Shapiro, Boris
%T Zeros of eigenfunctions of some anharmonic oscillators
%J Annales de l'Institut Fourier
%D 2008
%P 603-624
%V 58
%N 2
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2362/
%R 10.5802/aif.2362
%G en
%F AIF_2008__58_2_603_0
Eremenko, Alexandre; Gabrielov, Andrei; Shapiro, Boris. Zeros of eigenfunctions of some anharmonic oscillators. Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 603-624. doi : 10.5802/aif.2362. https://www.numdam.org/articles/10.5802/aif.2362/

[1] Bank, S. A note on the zeros of solutions w+P(z)w=0 where P is a polynomial, Appl. Anal., Volume 25 (1987) no. 1-2, pp. 29-41 | DOI | MR | Zbl

[2] Berezin, F. A.; Shubin, M. A. The Schrödinger equation, Kluwer, Dordrecht, 1991 | MR | Zbl

[3] Drape, E. Über die Darstellung Riemannscher Flächen durch Streckenkomplexe, Deutsche Math., Volume 1 (1936), pp. 805-824

[4] Duc Tai Trinh Asymptotique et analyse spectrale de l’oscillateur cubique, Université de Nice (2002) (Ph. D. Thesis)

[5] Duc Tai Trinh On the Sturm-Liouville problem for complex cubic oscillator, Asymptot. Anal., Volume 40 (2004) no. 3-4, pp. 211-324 | MR | Zbl

[6] Eremenko, A.; Gabrielov, A.; Shapiro, B. High energy eigenfunctions of one-dimensional Schrödinger operators with polynomial potentials (Preprint arXiv:math-ph/0703049)

[7] Eremenko, A.; Merenkov, S. Nevanlinna functions with real zeros, Illinois J. Math., Volume 49 (2005) no. 3-4, pp. 1093-1110 | MR | Zbl

[8] Goldberg, A. A.; Ostrovskii, I. V. Distribution of values of meromorphic functions, Nauka, Moscow, 1970 (English translation to appear in AMS) | MR

[9] González-Lopéz, A.; Kamran, N.; Olver, P. Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators, Comm. Math. Phys., Volume 153 (1993), pp. 117-146 | DOI | MR | Zbl

[10] Hille, E. Lectures on ordinary differential equations, Addison-Wesley, Menlo Park, CA, 1969 | MR | Zbl

[11] Hille, E. Ordinary differential equations in the complex domain, John Wiley and Sons, New York, 1976 | MR | Zbl

[12] Kamran, N.; Olver, P. Lie algebras, cohomology and new applications in quantum mechanics, Contemp. Math., 160, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[13] Nevanlinna, R. Über die Herstellung transzendenter Funktionen als Grenzwerte rationaler Funktionen, Acta Math., Volume 55 (1930), pp. 259-276 | DOI | MR

[14] Nevanlinna, R. Über Riemannsche Flächen mit endlich vielen Windungspunkten, Acta Math., Volume 58 (1932), pp. 295-373 | DOI | MR

[15] Nevanlinna, R. Eindeutige analytische Funktionen, 2-te Aufl., Springer, Berlin-Göttingen-Heidelberg, 1953 | MR | Zbl

[16] Shifman, M. Quasi-exactly-solvable spectral problems and conformal field theory, Contemp. Math., 160, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[17] Sibuya, Y. Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland Publishing Co., Amsterdam-Oxford, 1995 | MR | Zbl

[18] Stieltjes, T. Sur certains polynômes qui vérifient une équation differentielle linéaire du second ordre et sur la théorie des fonctions de Lamé, Acta Math., Volume 6 (1885), pp. 321-326 | DOI | MR

[19] Stieltjes, T. Œuvres complètes, 1, Springer, Berlin, 1993 | Zbl

[20] Titchmarsh, E. Eigenfunction expansions associated with second order differential equations, 1, Clarendon Press, Oxford, 1946 | Zbl

[21] Turbiner, A. Quasi-exactly-solvable problems and sl(2) algebra, Comm. Math. Phys., Volume 118 (1988), pp. 467-474 | DOI | MR | Zbl

[22] Turbiner, A. Lie algebras and linear operators with invariant subspaces, Contemp. Math., 160, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[23] Turbiner, A. Anharmonic oscillator and double well potential: approximating eigenfunctions, Letters in Math. Phys., Volume 74 (2005), pp. 169-180 | DOI | MR | Zbl

[24] Turbiner, A.; Ushveridze, A. Spectral singularities and the quasi-exactly solvable problem, Phys. Lett. A, Volume 126 (1987), pp. 181-183 | DOI | MR

[25] Ushveridze, A. Quasi-exactly solvable models in quantum mechanics, Inst. of Physics Publ., Bristol, 1994 | MR | Zbl

  • Bergweiler, Walter; Eremenko, Alexandre; Rempe, Lasse Second order linear differential equations with a basis of solutions having only real zeros, Journal d'Analyse Mathématique, Volume 152 (2024) no. 1, p. 53 | DOI:10.1007/s11854-023-0294-z
  • Acosta-Humánez, Primitivo B.; Ismail, Mourad E. H.; Saad, Nasser Sextic anharmonic oscillators and Heun differential equations, The European Physical Journal Plus, Volume 137 (2022) no. 7 | DOI:10.1140/epjp/s13360-022-03029-3
  • Alfaro, Matthieu; Veruete, Mario Evolutionary Branching via Replicator–Mutator Equations, Journal of Dynamics and Differential Equations, Volume 31 (2019) no. 4, p. 2029 | DOI:10.1007/s10884-018-9692-9
  • Gundersen, Gary G. Research Questions on Meromorphic Functions and Complex Differential Equations, Computational Methods and Function Theory, Volume 17 (2017) no. 2, p. 195 | DOI:10.1007/s40315-016-0178-7
  • Giachetti, Riccardo; Grecchi, Vincenzo Level crossings in aPT-symmetric double well, Journal of Physics A: Mathematical and Theoretical, Volume 49 (2016) no. 10, p. 105202 | DOI:10.1088/1751-8113/49/10/105202
  • Grecchi, Vincenzo Quantum mechanics: some basic techniques for some basic models, I: The models, Mathematics and Mechanics of Complex Systems, Volume 4 (2016) no. 3-4, p. 335 | DOI:10.2140/memocs.2016.4.335
  • Turbiner, Alexander V. One-dimensional quasi-exactly solvable Schrödinger equations, Physics Reports, Volume 642 (2016), p. 1 | DOI:10.1016/j.physrep.2016.06.002
  • Giachetti, Riccardo; Grecchi, Vincenzo Localization of the States of a PT-symmetric Double Well, International Journal of Theoretical Physics, Volume 54 (2015) no. 11, p. 3889 | DOI:10.1007/s10773-014-2403-3
  • Batic, D.; Mills-Howell, D.; Nowakowski, M. Potentials of the Heun class: The triconfluent case, Journal of Mathematical Physics, Volume 56 (2015) no. 5 | DOI:10.1063/1.4921344
  • Eremenko, Alexandre; Gabrielov, Andrei Two-parametric PT-symmetric quartic family, Journal of Physics A: Mathematical and Theoretical, Volume 45 (2012) no. 17, p. 175206 | DOI:10.1088/1751-8113/45/17/175206
  • Giller, Stefan The semiclassical small-ℏ limit of loci of roots of subdominant solutions for polynomial potentials, Journal of Mathematical Physics, Volume 52 (2011) no. 6 | DOI:10.1063/1.3598419
  • Anghel, N. Entire functions of finite order as solutions to certain complex linear differential equations, Proceedings of the American Mathematical Society, Volume 140 (2011) no. 7, p. 2319 | DOI:10.1090/s0002-9939-2011-11055-4
  • Shin, Kwang C. Asymptotics of Eigenvalues of Non-Self-Adjoint Schrödinger Operators on a Half-Line, Computational Methods and Function Theory, Volume 10 (2010) no. 1, p. 111 | DOI:10.1007/bf03321758
  • TURBINER, ALEXANDER V. DOUBLE WELL POTENTIAL: PERTURBATION THEORY, TUNNELING, WKB (BEYOND INSTANTONS), International Journal of Modern Physics A, Volume 25 (2010) no. 02n03, p. 647 | DOI:10.1142/s0217751x10048937
  • Eremenko, Alexandre; Gabrielov, Andrei Analytic Continuation of Eigenvalues of a Quartic Oscillator, Communications in Mathematical Physics, Volume 287 (2009) no. 2, p. 431 | DOI:10.1007/s00220-008-0663-6
  • Gibbons, J.; Veselov, A. P. On the rational monodromy-free potentials with sextic growth, Journal of Mathematical Physics, Volume 50 (2009) no. 1 | DOI:10.1063/1.3001604
  • Bervillier, C Conformal mappings versus other power series methods for solving ordinary differential equations: illustration on anharmonic oscillators, Journal of Physics A: Mathematical and Theoretical, Volume 42 (2009) no. 48, p. 485202 | DOI:10.1088/1751-8113/42/48/485202

Cité par 17 documents. Sources : Crossref