Nous étudions la torsion intrinsèque des variétés presque hermitiennes quaternioniennes via l’algèbre extérieur. En particulier, nous montrons comment elle est déterminée par trois-formes particulières, formées à partir de simples combinaisons des différentielles extérieures des formes kählériennes locales. Ceci donne une méthode pratique pour calculer la torsion intrinsèque qui s’applique dans de nombreux exemples. En plus, nous trouvons des caractérisations simples des géométries HKT et QKT en utilisant l’algèbre extérieur et nous calculons la modification de la torsion intrinsèque pour une construction twistée.
We study the intrinsic torsion of almost quaternion-Hermitian manifolds via the exterior algebra. In particular, we show how it is determined by particular three-forms formed from simple combinations of the exterior derivatives of the local Kähler forms. This gives a practical method to compute the intrinsic torsion and is applied in a number of examples. In addition we find simple characterisations of HKT and QKT geometries entirely in the exterior algebra and compute how the intrinsic torsion changes under a twist construction.
Keywords: Almost Hermitian structure, almost quaternion-Hermitian structure, $G$-structure, intrinsic torsion, $G$-connection, HKT-manifold, QKT-manifold
Mot clés : structure presque hermitienne, structure presque hermitienne quaternionienne, $G$-structure, torsion intrinsèque, $G$-connexion, HKT-variété, QKT-variété
@article{AIF_2008__58_5_1455_0, author = {Mart{\'\i}n Cabrera, Francisco and Swann, Andrew}, title = {The intrinsic torsion of almost {quaternion-Hermitian} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1455--1497}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {5}, year = {2008}, doi = {10.5802/aif.2390}, zbl = {1145.53017}, mrnumber = {2445825}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2390/} }
TY - JOUR AU - Martín Cabrera, Francisco AU - Swann, Andrew TI - The intrinsic torsion of almost quaternion-Hermitian manifolds JO - Annales de l'Institut Fourier PY - 2008 SP - 1455 EP - 1497 VL - 58 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2390/ DO - 10.5802/aif.2390 LA - en ID - AIF_2008__58_5_1455_0 ER -
%0 Journal Article %A Martín Cabrera, Francisco %A Swann, Andrew %T The intrinsic torsion of almost quaternion-Hermitian manifolds %J Annales de l'Institut Fourier %D 2008 %P 1455-1497 %V 58 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2390/ %R 10.5802/aif.2390 %G en %F AIF_2008__58_5_1455_0
Martín Cabrera, Francisco; Swann, Andrew. The intrinsic torsion of almost quaternion-Hermitian manifolds. Annales de l'Institut Fourier, Tome 58 (2008) no. 5, pp. 1455-1497. doi : 10.5802/aif.2390. http://archive.numdam.org/articles/10.5802/aif.2390/
[1] Flows on homogeneous spaces, With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. Annals of Mathematics Studies, No. 53, Princeton University Press, Princeton, N.J., 1963 | Zbl
[2] Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France, Volume 83 (1955), pp. 279-330 | Numdam | Zbl
[3] Representations of compact Lie groups, Graduate Texts in Mathematics, 98, Springer-Verlag, New York, 1985 | MR | Zbl
[4] Einstein metrics via intrinsic or parallel torsion, Math. Z., Volume 247 (2004) no. 3, pp. 513-528 | DOI | MR | Zbl
[5] Minimal models in differential geometry, Proceedings of the Workshop on Recent Topics in Differential Geometry (Puerto de la Cruz, 1990) (Informes), Volume 32, Univ. La Laguna, La Laguna (1991), pp. 31-41 | MR | Zbl
[6] On the quaternionic Heisenberg group, Boll. Un. Mat. Ital. A (7), Volume 1 (1987) no. 1, pp. 31-37 | MR | Zbl
[7] Compact symplectic four solvmanifolds without polarizations, Ann. Fac. Sci. Toulouse Math. (5), Volume 10 (1989) no. 2, pp. 193-198 | DOI | Numdam | MR | Zbl
[8] Symmetry properties of the covariant derivative of the fundamental -form of a quaternionic manifold, Riv. Mat. Univ. Parma (4), Volume 12 (1986), p. 249-256 (1987) | MR | Zbl
[9] Compact symplectic solvmanifolds not admitting complex structures, Geom. Dedicata, Volume 34 (1990) no. 3, pp. 295-299 | DOI | MR | Zbl
[10] Twisted multiplets and new supersymmetric nonlinear -models, Nuclear Phys. B, Volume 248 (1984) no. 1, pp. 157-186 | DOI | MR
[11] Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys., Volume 213 (2000) no. 1, pp. 19-37 | DOI | MR | Zbl
[12] Minimal varieties and almost Hermitian submanifolds, Michigan Math. J., Volume 12 (1965), pp. 273-287 | DOI | MR | Zbl
[13] The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4), Volume 123 (1980), pp. 35-58 | DOI | MR | Zbl
[14] The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), Volume 55 (1987) no. 1, pp. 59-126 | DOI | MR | Zbl
[15] Twistor spaces for QKT manifolds, Comm. Math. Phys., Volume 197 (1998) no. 3, pp. 713-727 | DOI | MR | Zbl
[16] Further remarks on the geometry of two-dimensional nonlinear models, Classical Quantum Gravity, Volume 5 (1988) no. 12, pp. 1647-1661 | DOI | MR | Zbl
[17] Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B, Volume 379 (1996) no. 1-4, pp. 80-86 | DOI | MR
[18] Geometry of quaternionic Kähler connections with torsion, J. Geom. Phys., Volume 41 (2002) no. 3, pp. 235-257 | DOI | MR | Zbl
[19] Compact hypercomplex and quaternionic manifolds, J. Differential Geom., Volume 35 (1992) no. 3, pp. 743-761 | MR | Zbl
[20] Almost quaternion-Hermitian manifolds, Ann. Global Anal. Geom., Volume 25 (2004) no. 3, pp. 277-301 | DOI | MR | Zbl
[21] Almost Hermitian structures and quaternionic geometries, Differential Geom. Appl., Volume 21 (2004) no. 2, pp. 199-214 | DOI | MR | Zbl
[22] Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math., Volume 26 (1956), pp. 43-77 | MR | Zbl
[23] Quaternionic Kähler manifolds, Invent. Math., Volume 67 (1982) no. 1, pp. 143-171 | DOI | MR | Zbl
[24] Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. (4), Volume 19 (1986) no. 1, pp. 31-55 | Numdam | MR | Zbl
[25] Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics Series, 201, Longman Scientific & Technical, Harlow, 1989 | Zbl
[26] Almost parallel structures, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000) (Contemp. Math.), Volume 288, Amer. Math. Soc., Providence, RI, 2001, pp. 162-181 | MR | Zbl
[27] Aspects symplectiques de la géométrie quaternionique, C. R. Acad. Sci. Paris Sér. I Math., Volume 308 (1989) no. 7, pp. 225-228 | MR | Zbl
[28] T is for twist, Proceedings of the XV International Workshop on Geometry and Physics (Puerto de la Cruz, 2006), Volume 10, Spanish Royal Mathematical Society, Madrid (2007), pp. 83-94
Cité par Sources :