Nous étudions le problème de savoir si tous les sous-schémas arithmétiquement de Cohen-Macaulay de sont “glicci” dans le cas de plus petite dimension, c’est-à-dire le cas de sous-schémas de dimension zéro de . Nous prouvons qu’il n’y a pas de liaisons ni de biliaisons de Gorenstein descendantes d’un ensemble d’au moins 56 points généraux de . Pour démontrer ce théorème, nous établissons plusieurs résultats concernant les sous-schémas arithmétiquement de Gorenstein de .
We study the lowest dimensional open case of the question whether every arithmetically Cohen–Macaulay subscheme of is glicci, that is, whether every zero-scheme in is glicci. We show that a general set of points in admits no strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we establish a number of important results about arithmetically Gorenstein zero-schemes in .
Keywords: Gorenstein liaison, zero-dimensional schemes, $h$-vector
Mot clés : liaison de Gorenstein, schéma de dimension zéro, vecteur $h$
@article{AIF_2008__58_6_2037_0, author = {Hartshorne, Robin and Sabadini, Irene and Schlesinger, Enrico}, title = {Codimension $3$ {Arithmetically} {Gorenstein} {Subschemes} of projective $N$-space}, journal = {Annales de l'Institut Fourier}, pages = {2037--2073}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {6}, year = {2008}, doi = {10.5802/aif.2405}, zbl = {1155.14005}, mrnumber = {2473628}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2405/} }
TY - JOUR AU - Hartshorne, Robin AU - Sabadini, Irene AU - Schlesinger, Enrico TI - Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space JO - Annales de l'Institut Fourier PY - 2008 SP - 2037 EP - 2073 VL - 58 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2405/ DO - 10.5802/aif.2405 LA - en ID - AIF_2008__58_6_2037_0 ER -
%0 Journal Article %A Hartshorne, Robin %A Sabadini, Irene %A Schlesinger, Enrico %T Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space %J Annales de l'Institut Fourier %D 2008 %P 2037-2073 %V 58 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2405/ %R 10.5802/aif.2405 %G en %F AIF_2008__58_6_2037_0
Hartshorne, Robin; Sabadini, Irene; Schlesinger, Enrico. Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2037-2073. doi : 10.5802/aif.2405. http://archive.numdam.org/articles/10.5802/aif.2405/
[1] Gorenstein Artin algebras and points in projective space, Bull. London Math. Soc., Volume 31 (1997), pp. 11-16 | DOI | MR | Zbl
[2] Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, Volume 39, Cambridge University Press, 1993 | MR | Zbl
[3] Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math., Volume 99 (1977), pp. 447-485 | DOI | MR | Zbl
[4] Gorenstein liaison and ACM sheaves, J. Reine Angew. Math., Volume 584 (2005), pp. 149-171 | DOI | MR | Zbl
[5] Gorenstein biliaison and ACM sheaves, J. Algebra, Volume 278 (2004), pp. 314-341 | DOI | MR | Zbl
[6] Hilbert function of powers of ideals of low codimension, Math. Z., Volume 230 (1999), pp. 753-784 | DOI | MR | Zbl
[7] Gorenstein algebras and the Cayley-Bacharach Theorem, Proc. Amer. Math. Soc., Volume 93 (1985), pp. 593-597 | DOI | MR | Zbl
[8] The -vector of a Gorenstein codimension three domain, Nagoya Math. J., Volume 138 (1995), pp. 113-140 | MR | Zbl
[9] Irreducibility and dimension theorems for families of height 3 Gorenstein algebras, Pacific J. Math., Volume 172 (1996), pp. 365-397 | MR | Zbl
[10] Exemples de courbes de à fibré normal semi-stable, stable, Math. Ann., Volume 264 (1983), pp. 389-396 | DOI | MR | Zbl
[11] Double structures and normal bundle of space curves, J. London Math. Soc., Volume 58 (1998), pp. 18-26 | DOI | MR | Zbl
[12] Sur le schéma de Hilbert des variétés de codimension 2 dans à cône de Cohen–Macaulay, Ann. Sci. ENS, Volume 8 (1975), pp. 423-432 | Numdam | MR | Zbl
[13] Genre des courbes de l’espace projectif, Springer LNM, Volume 687 (1977), pp. 31-59 | Zbl
[14] Ample Subvarieties of Algebraic Varieties, Lectures Notes in Math., 156, Springer Verlag, Heidelberg, 1970 | MR | Zbl
[15] On the classification of algebraic space curves. II, Algebraic geometry, Bowdoin, Volume 46 (1985), pp. 145-164 (Proc. Sympos. Pure Math., Part 1, Amer. Math. Soc., Providence, RI, 1987) | MR | Zbl
[16] Generalized divisors on Gorenstein schemes, -Theory, Volume 8 (1994), pp. 287-339 | DOI | MR | Zbl
[17] Some examples of Gorenstein liaison in codimension three, Collect. Math., Volume 53 (2002), pp. 21-48 | MR | Zbl
[18] Geometry of arithmetically Gorenstein curves in , Collect. Math., Volume 55 (2004) no. 1, pp. 97-111 | MR | Zbl
[19] Generalized divisors and biliaison, Illinois J. Math., Volume 51 (2007), pp. 83-98 | MR | Zbl
[20] On hyperplane sections of reduced irreducible varieties of low codimension, J. Math. Kyoto Univ., Volume 34 (1994), pp. 47-72 | MR | Zbl
[21] Maximal Families of Gorenstein Algebras, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 3133-3167 | DOI | MR | Zbl
[22] Maximal Families of Gorenstein Algebras, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 3133-3167 | DOI | MR | Zbl
[23] Gorenstein liaison, complete intersection liaison invariants and unobstructedness, Memoirs Amer. Math. Soc., 2001 no. 732 | Zbl
[24] The dimension of the Hilbert scheme of Gorenstein codimension 3 subschemes, J. Pure Appl. Algebra, Volume 127 (1998), pp. 73-82 | DOI | MR | Zbl
[25] On -dimensional complete intersections, Math. Ann., Volume 292 (1992), pp. 43-58 | DOI | MR | Zbl
[26] Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc., Volume 26 (1927), pp. 531-555 | DOI
[27] Sur la classification des courbes gauches, Astérisque, 184–185, Société Mathématique de France, 1990 | Numdam | MR | Zbl
[28] Introduction to Liaison Theory and Deficiency Modules, Birkhäuser, Boston, 1998 | MR | Zbl
[29] Monomial ideals and the Gorenstein liaison class of a complete intersection, Compositio Math., Volume 133 (2002), pp. 25-36 | DOI | MR | Zbl
[30] Bounds on multisecant lines, Collect. Math., Volume 49 (1998), pp. 447-463 | MR | Zbl
[31] Courbes passant par points généraux de , Mémoires, 28–29, Soc. Math. France (N.S.), 1987 | Numdam | MR | Zbl
[32] Topics on families of projective schemes, Queen’s Papers in Pure and Applied Mathematics, Volume 73, Queen’s University, Kingston, 1986
[33] Hilbert functions of graded algebras, Advances in Math., Volume 28 (1978), pp. 57-83 | DOI | MR | Zbl
[34] Algebraic cohomology methods for the normal bundle of algebraic space curves (1990) (Preprint)
[35] A note on Gorenstein rings of embedding codimension three, Nagoya Math. J., Volume 50 (1973), pp. 227-232 | MR | Zbl
Cité par Sources :