Differential Equations associated to Families of Algebraic Cycles
[Équations différentielles associées aux familles de cycles algébriques]
Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2075-2085.

Nous développons une théorie d’équations associées aux familles de cycles algébriques dans des groupes de Chow supérieurs. Ce formalisme est lié au type inhomogène d’équations de Picard-Fuchs. Pour les familles de surfaces K3 l’équation différentielle ordinaire non-linéaire est semblable à l’équation de Chazy.

We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.

DOI : 10.5802/aif.2406
Classification : 14C25, 19E20
Keywords: Higher Chow group, Picard-Fuchs operator, normal function, differential equation
Mot clés : groupe de Chow supérieur, opérateur de Picard-Fuchs, fonction normale, équation différentielle
del Angel, Pedro Luis 1 ; Müller-Stach, Stefan 2

1 CIMAT Guanajuato, Mexico (Mexique)
2 Johannes Gutenberg–Universität Mainz Institut für Mathematik Fachbereich 08 (Deutschland)
@article{AIF_2008__58_6_2075_0,
     author = {del Angel, Pedro Luis and M\"uller-Stach, Stefan},
     title = {Differential {Equations} associated to {Families} of {Algebraic} {Cycles}},
     journal = {Annales de l'Institut Fourier},
     pages = {2075--2085},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {6},
     year = {2008},
     doi = {10.5802/aif.2406},
     zbl = {1151.14009},
     mrnumber = {2473629},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2406/}
}
TY  - JOUR
AU  - del Angel, Pedro Luis
AU  - Müller-Stach, Stefan
TI  - Differential Equations associated to Families of Algebraic Cycles
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 2075
EP  - 2085
VL  - 58
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2406/
DO  - 10.5802/aif.2406
LA  - en
ID  - AIF_2008__58_6_2075_0
ER  - 
%0 Journal Article
%A del Angel, Pedro Luis
%A Müller-Stach, Stefan
%T Differential Equations associated to Families of Algebraic Cycles
%J Annales de l'Institut Fourier
%D 2008
%P 2075-2085
%V 58
%N 6
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2406/
%R 10.5802/aif.2406
%G en
%F AIF_2008__58_6_2075_0
del Angel, Pedro Luis; Müller-Stach, Stefan. Differential Equations associated to Families of Algebraic Cycles. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2075-2085. doi : 10.5802/aif.2406. http://archive.numdam.org/articles/10.5802/aif.2406/

[1] André, Y. G –functions, Aspects of Mathematics, E13, Viehweg Verlag, 1989

[2] Bloch, S. Higher Chow groups: Basic definitions and properties (Homepage Bloch)

[3] Bloch, S. Algebraic cycles and the Beilinson conjectures, Contemporary Math., Volume 58 (1986), pp. 65-79 | MR | Zbl

[4] Boalch, Ph. Symplectic manifolds and isomonodromic deformations, Adv. Math., Volume 163 (2001) no. 2, pp. 137-205 | DOI | MR | Zbl

[5] Carlson, J.; Müller-Stach, S.; Peters, Ch. Period mappings and period domains, Cambridge Univ. Press, 2003 | MR | Zbl

[6] Chazy, J. Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Acta Math., Volume 34 (1910), pp. 317-385 | DOI

[7] del Angel, P. L.; Müller-Stach, S. The transcendental part of the regulator map for K 1 on a family of K3 surfaces, Duke Journal, Volume 12 (2002) no. 3, pp. 581-598 | DOI | Zbl

[8] Deligne, P. Équations différentielles à points réguliers singuliers, Springer, 1970 | MR | Zbl

[9] Fuchs, R. Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann., Volume 63 (1907), pp. 301-321 | DOI | MR

[10] Griffiths, Ph. A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles, Amer. J. Math., Volume 101 (1979), pp. 94-131 | DOI | MR | Zbl

[11] Kerr, M.; Lewis, J.; Müller–Stach, S. The Abel-Jacobi map for higher Chow groups, Compositio Math., Volume 142 (2006), pp. 374-396 | DOI | MR | Zbl

[12] Kulikov, V. Mixed Hodge structures and singularities, Cambridge Univ. Press, 1998 | MR | Zbl

[13] Manin, Y. I. Sixth Painlevé equation, universal elliptic curve and mirror of 2 , Amer. Math. Soc. Translations, Volume 186 (1998) no. 2, pp. 131-151 | MR | Zbl

[14] Morrison, D.; Walcher, J. D–branes and normal functions (2007) (Preprint hep-th/0709402)

[15] Müller–Stach, S. Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom., Volume 6 (1997), pp. 513-543 | MR | Zbl

[16] Painlevé, P. Stockholm lectures, Hermann Paris, 1897

[17] Saito, M. Admissible normal functions, J. Algebraic Geom., Volume 5 (1996), pp. 235-276 | MR | Zbl

[18] Steenbrink, J.; Zucker, S. Variation of mixed Hodge structure I, Invent. Math., Volume 80 (1985), pp. 489-542 | DOI | MR | Zbl

[19] Stiller, P. Special values of Dirichlet series, monodromy, and the periods of automorphic forms, AMS, 1984 | MR | Zbl

[20] Umemura, U. 100 years of the Painlevé equation, Sugaku, Volume 51 (1999) no. 4, pp. 395-420 | MR

Cité par Sources :