We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.
Nous démontrons un analogue du théorème de Grothendieck-Riemann-Roch en géométrie d’Arakelov.
Keywords: Arakelov Geometry, Grothendieck-Riemann-Roch theorem, analytic torsion form, arithmetic intersection theory
Mot clés : géométrie d’Arakelov, théorème de Grothendieck-Riemann-Roch, forme de torsion analytique, théorie de l’intersection arithmétique
@article{AIF_2008__58_6_2169_0, author = {Gillet, Henri and R\"ossler, Damian and Soul\'e, Christophe}, title = {An arithmetic {Riemann-Roch} theorem in higher degrees}, journal = {Annales de l'Institut Fourier}, pages = {2169--2189}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {6}, year = {2008}, doi = {10.5802/aif.2410}, zbl = {1152.14023}, mrnumber = {2473633}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2410/} }
TY - JOUR AU - Gillet, Henri AU - Rössler, Damian AU - Soulé, Christophe TI - An arithmetic Riemann-Roch theorem in higher degrees JO - Annales de l'Institut Fourier PY - 2008 SP - 2169 EP - 2189 VL - 58 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2410/ DO - 10.5802/aif.2410 LA - en ID - AIF_2008__58_6_2169_0 ER -
%0 Journal Article %A Gillet, Henri %A Rössler, Damian %A Soulé, Christophe %T An arithmetic Riemann-Roch theorem in higher degrees %J Annales de l'Institut Fourier %D 2008 %P 2169-2189 %V 58 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2410/ %R 10.5802/aif.2410 %G en %F AIF_2008__58_6_2169_0
Gillet, Henri; Rössler, Damian; Soulé, Christophe. An arithmetic Riemann-Roch theorem in higher degrees. Annales de l'Institut Fourier, Volume 58 (2008) no. 6, pp. 2169-2189. doi : 10.5802/aif.2410. http://archive.numdam.org/articles/10.5802/aif.2410/
[1] An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat., Volume 38 (1974), pp. 1179-1192 | MR | Zbl
[2] Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004 (Corrected reprint of the 1992 original) | MR | Zbl
[3] Théorie des intersections et théorème de Riemann-Roch, Springer-Verlag, Berlin, 1971 Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre, Lecture Notes in Mathematics, Vol. 225 | MR | Zbl
[4] Bott-Chern currents and complex immersions, Duke Math. J., Volume 60 (1990) no. 1, pp. 255-284 | DOI | MR | Zbl
[5] Holomorphic families of immersions and higher analytic torsion forms, Astérisque (1997) no. 244, pp. viii+275 | Numdam | MR | Zbl
[6] Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys., Volume 115 (1988) no. 1, pp. 49-78 | DOI | Zbl
[7] Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys., Volume 115 (1988) no. 1, pp. 79-126 | DOI | MR | Zbl
[8] Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys., Volume 115 (1988) no. 2, pp. 301-351 | DOI | MR | Zbl
[9] Complex immersions and Arakelov geometry, The Grothendieck Festschrift, Vol. I (Progr. Math.), Volume 86, Birkhäuser Boston, Boston, MA, 1990, pp. 249-331 | MR | Zbl
[10] Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom., Volume 1 (1992) no. 4, pp. 647-684 | MR | Zbl
[11] Analytic torsion of projective spaces and compatibility with immersions of Quillen metrics, Internat. Math. Res. Notices (1998) no. 8, pp. 427-435 | DOI | MR | Zbl
[12] Calculus on arithmetic surfaces, Ann. of Math. (2), Volume 119 (1984) no. 2, pp. 387-424 | DOI | MR | Zbl
[13] Lectures on the arithmetic Riemann-Roch theorem, Annals of Mathematics Studies, 127, Princeton University Press, Princeton, NJ, 1992 (Notes taken by Shouwu Zhang) | MR | Zbl
[14] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 2, Springer-Verlag, Berlin, 1984 | MR | Zbl
[15] Analytic torsion and the arithmetic Todd genus, Topology, Volume 30 (1991) no. 1, pp. 21-54 (With an appendix by D. Zagier) | DOI | MR | Zbl
[16] Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. (1990) no. 72, p. 93-174 (1991) | Numdam | MR | Zbl
[17] Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math. (2), Volume 131 (1990) no. 1, pp. 163-203 | DOI | MR | Zbl
[18] Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2), Volume 131 (1990) no. 2, pp. 205-238 | DOI | MR | Zbl
[19] An arithmetic Riemann-Roch theorem, Invent. Math., Volume 110 (1992) no. 3, pp. 473-543 | DOI | MR | Zbl
[20] Moving lemma for -chains, J. Reine Angew. Math., Volume 548 (2002), pp. 1-19 | DOI | MR | Zbl
[21] Introduction to Arakelov theory, Springer-Verlag, New York, 1988 | MR | Zbl
[22] Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France, Volume 85 (1957), pp. 239-262 | Numdam | MR | Zbl
[23] An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math. J., Volume 96 (1999) no. 1, pp. 61-126 | DOI | MR | Zbl
[24] Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics, 33, Cambridge University Press, Cambridge, 1992 (With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer) | MR | Zbl
[25] A General Arithmetic Riemann-Roch Theorem, Chicago University (1998) (Ph. D. Thesis)
Cited by Sources: