Poisson boundary of triangular matrices in a number field
Annales de l'Institut Fourier, Volume 59 (2009) no. 2, pp. 575-593.

The aim of this note is to describe the Poisson boundary of the group of invertible triangular matrices with coefficients in a number field. It generalizes to any dimension and to any number field a result of Brofferio concerning the Poisson boundary of random rational affinities.

L’objet de cette note est de décrire la frontière de Poisson du groupe des matrices triangulaires supérieures inversibles à coefficients dans un corps de nombre. C’est une généralisation en dimension supérieure d’un résultat de Brofferio concernant la frontière de Poisson du groupe des applications affines rationnelles.

DOI: 10.5802/aif.2441
Classification: 22D40, 28D05, 28D20, 60B15, 60J10, 60J50
Keywords: Random walks, Poisson boundary, triangular matrices, number field, Bruhat decomposition
Mot clés : Marches aléatoire, Frontière de Poisson, matrices triangulaires, corps de nombre, décomposition de Bruhat
Schapira, Bruno 1

1 Université Paris-Sud Département de Mathématiques Bât. 425 91405 Orsay Cedex (France)
@article{AIF_2009__59_2_575_0,
     author = {Schapira, Bruno},
     title = {Poisson boundary of triangular matrices in a number field},
     journal = {Annales de l'Institut Fourier},
     pages = {575--593},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {2},
     year = {2009},
     doi = {10.5802/aif.2441},
     zbl = {1171.60003},
     mrnumber = {2521429},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2441/}
}
TY  - JOUR
AU  - Schapira, Bruno
TI  - Poisson boundary of triangular matrices in a number field
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 575
EP  - 593
VL  - 59
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2441/
DO  - 10.5802/aif.2441
LA  - en
ID  - AIF_2009__59_2_575_0
ER  - 
%0 Journal Article
%A Schapira, Bruno
%T Poisson boundary of triangular matrices in a number field
%J Annales de l'Institut Fourier
%D 2009
%P 575-593
%V 59
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2441/
%R 10.5802/aif.2441
%G en
%F AIF_2009__59_2_575_0
Schapira, Bruno. Poisson boundary of triangular matrices in a number field. Annales de l'Institut Fourier, Volume 59 (2009) no. 2, pp. 575-593. doi : 10.5802/aif.2441. http://archive.numdam.org/articles/10.5802/aif.2441/

[1] Bader, U.; Shalom, Y. Factor and normal subgroup theorems for lattices in products of groups, Invent. Math., Volume 163 (2006), pp. 415-454 | DOI | MR | Zbl

[2] Brofferio, S. The Poisson Boundary of random rational affinities, Ann. Inst. Fourier, Volume 56 (2006), pp. 499-515 | DOI | Numdam | MR | Zbl

[3] Cartwright, D. I.; Kaimanovich, V. A.; Woess, W. Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst. Fourier, Volume 44 (1994), pp. 1243-1288 | DOI | Numdam | MR | Zbl

[4] Derriennic, Y. Entropie, théorèmes limite et marches aléatoires, Probability measures on groups VIII (Lect. Notes Math.), Volume 1210, Springer, Berlin, Proc. 8th Conf., Oberwolfach, 1985 (1986), pp. 241-284 | MR | Zbl

[5] Élie, L. Noyaux potentiels associés aux marches aléatoires sur les espaces homogènes. Quelques exemples clefs dont le groupe affine, Théorie du potentiel (Lectures Notes in Math.), Volume 1096, Proc. Colloq. J. Deny (Orsay, 1983) (1984), pp. 223-260 | MR | Zbl

[6] Furman, A. Random walks on groups and random transformations, Handbook of dynamical systems, Volume 1A, Amsterdam, North-Holland (2002), pp. 931-1014 | MR | Zbl

[7] Furstenberg, H. A Poisson formula for semi-simple Lie groups, Ann. of Math., Volume 77 (1963), pp. 335-386 | DOI | MR | Zbl

[8] Furstenberg, H. Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces, Amer. Math. Soc., Providence, R.I., Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972 (1973), pp. 193-229 | MR | Zbl

[9] Guivarc’h, Y.; Raugi, A. Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrsch. Verw. Gebiete, Volume 69 (1985), pp. 187-242 | DOI | MR | Zbl

[10] Kaimanovich, V. A. The Poisson formula for groups with hyperbolic properties, Ann. of Math., Volume 152 (2000) no. 2, pp. 659-692 | DOI | MR | Zbl

[11] Lang, S. Introduction to diophantine approximations, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966 | MR | Zbl

[12] Ledrappier, F. Poisson boundaries of discrete groups of matrices, Israel J. Math., Volume 50 (1985), pp. 319-336 | DOI | MR | Zbl

[13] Raugi, A. Fonctions harmoniques sur les groupes localement compacts à base dénombrable, Bull. Soc. Math. France Mém. (1977) no. 54, pp. 5-118 | Numdam | MR | Zbl

[14] Samuel, P. Théorie algébrique des nombres, Hermann, Paris, 1967 (130 pp.) | MR | Zbl

[15] Serre, J.-P. Corps locaux, Sec. edition, Publications of University Nancago, Hermann, Paris, 1968 no. VIII (245 pp.) | MR | Zbl

[16] Warner, G. Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, 188, Springer-Verlag, New York-Heidelberg, 1972 (xvi+529 pp.) | MR | Zbl

[17] Weil, A. Basic number theory, Third edition, Die Grundlehren der Mathematischen Wissenschaften, 144, Springer-Verlag, New York-Berlin, 1974 (xviii+325 pp.) | MR | Zbl

Cited by Sources: