Dans cet article nous prouvons la conjecture de Knop qui affirme que deux variétés affines sphériques lisses avec le même monoïde des poids sont isomorphes de manière équivariante. On énonce et prouve également une propriété d’unicité pour des variétés affines sphériques non nécessairement lisses.
In this paper we prove the Knop conjecture asserting that two smooth affine spherical varieties with the same weight monoid are equivariantly isomorphic. We also state and prove a uniqueness property for (not necessarily smooth) affine spherical varieties.
Keywords: Spherical varieties, weight monoids, systems of spherical roots, multiplicity free Hamiltonian actions
Mot clés : variété sphérique, monoïde
@article{AIF_2009__59_3_1105_0, author = {Losev, Ivan V.}, title = {Proof of the {Knop} conjecture}, journal = {Annales de l'Institut Fourier}, pages = {1105--1134}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {3}, year = {2009}, doi = {10.5802/aif.2459}, zbl = {1191.14075}, mrnumber = {2543664}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2459/} }
TY - JOUR AU - Losev, Ivan V. TI - Proof of the Knop conjecture JO - Annales de l'Institut Fourier PY - 2009 SP - 1105 EP - 1134 VL - 59 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2459/ DO - 10.5802/aif.2459 LA - en ID - AIF_2009__59_3_1105_0 ER -
Losev, Ivan V. Proof of the Knop conjecture. Annales de l'Institut Fourier, Tome 59 (2009) no. 3, pp. 1105-1134. doi : 10.5802/aif.2459. https://www.numdam.org/articles/10.5802/aif.2459/
[1] Some properties of the decompositions of algebraic varieties determined by an action of a torus, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., Volume 24 (1976), pp. 667-674 | MR | Zbl
[2] Sur l’image de l’application moment, Lect. Notes Math., 1296, Springer Verlag, 1987 | MR | Zbl
[3] Espaces homogènes sphériques, Invent. Math., Volume 84 (1986), pp. 617-632 | DOI | MR | Zbl
[4] Variétés sphériques affines lisses, Université J. Fourier (2001) (Ph. D. Thesis http://www-fourier.ujf-grenoble.fr/THESE/html/a110)
[5] Hamiltoniens périodiques et images convexes de l’application moment, Bul. Soc. Math. France, Volume 116 (1988), pp. 315-339 | Numdam | MR | Zbl
[6] Classification des actions hamiltoniennes complètement intégrables de rang deux, Ann. Global. Anal. Geom., Volume 8 (1990), pp. 87-112 | DOI | MR | Zbl
[7] Constructing invariant polynomials via Tschirnhaus transformations, Lect. Notes Math., 1278, Springer Verlag, 1987 | MR | Zbl
[8] Symplectic implosion, Transform. Groups, Volume 7 (2002), pp. 155-184 | DOI | MR | Zbl
[9] Convexity properties of the moment mapping III, Invent. Math., Volume 77 (1984), pp. 547-552 | DOI | MR | Zbl
[10] The Luna-Vust theory of spherical embeddings, Proceedings of the Hydebarad conference on algebraic groups, Manoj Prakashan, Madras (1991), pp. 225-249 | MR | Zbl
[11] The asymptotic behaviour of invariant collective motion, Invent. Math., Volume 114 (1994), pp. 309-328 | DOI | MR | Zbl
[12] Automorphisms, root systems and compactifications, J. Amer. Math. Soc., Volume 9 (1996), pp. 153-174 | DOI | MR | Zbl
[13] Classification of smooth affine spherical varieties, Transform. Groups, Volume 11 (2006), pp. 495-516 | DOI | MR | Zbl
[14] Spharische Untergruppen in kompakten zusammenhangenden Liegruppen, Compos. Math., Volume 38 (1979), pp. 129-153 | Numdam | MR | Zbl
[15] A classification of multiplicity free representations, J. Lie Theory, Volume 8 (1998), pp. 376-391 | MR | Zbl
[16] Uniqueness properties for spherical homogeneous spaces (to appear in Duke Math. J.)
[17] Grosses cellules pour les variétés sphériques, Austr. Math. Soc. Lect. Ser., 9, Cambridge University Press, 1997 | MR | Zbl
[18] Variétés sphériques de type A, IHES Publ. Math., Volume 94 (2001), pp. 161-226 | DOI | Numdam | MR | Zbl
[19] Lie groups and algebraic groups, Springer Verlag, 1990 | MR | Zbl
[20] Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Math. USSR-Izv, Volume 7 (1973), pp. 301-327 | Zbl
[21] Contractions of the actions of reductive algebraic groups, Math. USSR Sborhik, Volume 58 (1987), pp. 311-355 | DOI | MR | Zbl
[22] Plongement d’espaces symétriques algébriques: une classification, Ann. Sc. Norm. Super. Pisa, Ser. IV, Volume 17 (1990), pp. 165-194 | Numdam | MR | Zbl
[23] Wonderful varieties of rank 2, Transform. Groups, Volume 1 (1996), pp. 375-403 | DOI | MR | Zbl
[24] The classification of transversal multiplicity-free Hamiltonian actions, Ann. Global. Anal. Geom., Volume 14 (1996), pp. 3-42 | DOI | MR | Zbl
[25] Spherical varieties and existence of invariant Kahler structure, Duke Math. J, Volume 93 (1998), pp. 345-377 | DOI | MR | Zbl
- Convexity of singular affine structures and toric-focus integrable Hamiltonian systems, Memoirs of the American Mathematical Society, 1424, Providence, RI: American Mathematical Society (AMS), 2023 | DOI:10.1090/memo/1424 | Zbl:1526.37002
- (Quasi-)Hamiltonian manifolds of cohomogeneity one, Mathematische Zeitschrift, Volume 305 (2023) no. 2, p. 27 (Id/No 29) | DOI:10.1007/s00209-023-03325-3 | Zbl:1533.53066
- Spherical cones: classification and a volume minimization principle, The Journal of Geometric Analysis, Volume 33 (2023) no. 7, p. 46 (Id/No 221) | DOI:10.1007/s12220-023-01286-x | Zbl:1521.32028
- Spherical supervarieties, Annales de l'Institut Fourier, Volume 71 (2021) no. 4, pp. 1449-1492 | DOI:10.5802/aif.3421 | Zbl:1492.14092
- Existence of Equivariant Models of Spherical Varieties and OtherG-varieties, International Mathematics Research Notices, Volume 2022 (2022) no. 20, p. 15932 | DOI:10.1093/imrn/rnab102
- Root subgroups on affine spherical varieties, Selecta Mathematica. New Series, Volume 28 (2022) no. 3, p. 37 (Id/No 60) | DOI:10.1007/s00029-022-00775-1 | Zbl:1492.14108
- Characterizing smooth affine spherical varieties via the automorphism group, Journal de l'École Polytechnique – Mathématiques, Volume 8 (2021), pp. 379-414 | DOI:10.5802/jep.149 | Zbl:1473.14114
- Local normal forms for multiplicity free
actions on coadjoint orbits, Pacific Journal of Mathematics, Volume 309 (2020) no. 2, pp. 401-419 | DOI:10.2140/pjm.2020.309.401 | Zbl:1458.53086 - Momentum polytopes of projective spherical varieties and related Kähler geometry, Selecta Mathematica. New Series, Volume 26 (2020) no. 2, p. 54 (Id/No 27) | DOI:10.1007/s00029-020-0549-9 | Zbl:1457.14116
- Combinatorial characterization of the weight monoids of smooth affine spherical varieties, Transactions of the American Mathematical Society, Volume 372 (2019) no. 4, pp. 2875-2919 | DOI:10.1090/tran/7785 | Zbl:1476.14088
- On some families of smooth affine spherical varieties of full rank, Acta Mathematica Sinica. English Series, Volume 34 (2018) no. 3, pp. 563-596 | DOI:10.1007/s10114-018-7244-1 | Zbl:1423.14294
- New and old results on spherical varieties via moduli theory, Advances in Mathematics, Volume 328 (2018), pp. 1299-1352 | DOI:10.1016/j.aim.2018.01.027 | Zbl:1423.14290
- Hamiltonian group actions on exact symplectic manifolds with proper momentum maps are standard, Transactions of the American Mathematical Society, Volume 370 (2018) no. 2, pp. 1409-1428 | DOI:10.1090/tran/7188 | Zbl:1431.53093
- On the irreducible components of moduli schemes for affine spherical varieties, Transformation Groups, Volume 23 (2018) no. 2, pp. 299-327 | DOI:10.1007/s00031-017-9443-8 | Zbl:1423.14291
- Equivariant degenerations of spherical modules. II, Algebras and Representation Theory, Volume 19 (2016) no. 5, pp. 1135-1171 | DOI:10.1007/s10468-016-9614-7 | Zbl:1387.14135
- TREATMENT OF NECROTIC ENTEROCOLITIS IN NEWBORN CHILDREN, Grekov's Bulletin of Surgery, Volume 175 (2016) no. 1, p. 71 | DOI:10.24884/0042-4625-2016-175-1-71-73
- The Moduli Scheme of Affine Spherical Varieties with a Free Weight Monoid: Table 1., International Mathematics Research Notices, Volume 2016 (2016) no. 15, p. 4544 | DOI:10.1093/imrn/rnv281
- Classification of Hamiltonian torus actions with two-dimensional quotients, Geometry Topology, Volume 18 (2014) no. 2, pp. 669-716 | DOI:10.2140/gt.2014.18.669 | Zbl:1286.53084
- The Cox ring of a spherical embedding, Journal of Algebra, Volume 397 (2014), pp. 548-569 | DOI:10.1016/j.jalgebra.2013.08.037 | Zbl:1317.14115
- Wonderful subgroups of reductive groups and spherical systems, Journal of Algebra, Volume 409 (2014), pp. 101-147 | DOI:10.1016/j.jalgebra.2014.03.018 | Zbl:1303.14060
- On the geometry of spherical varieties, Transformation Groups, Volume 19 (2014) no. 1, pp. 171-223 | DOI:10.1007/s00031-014-9254-0 | Zbl:1309.14001
- Stability of branching laws for spherical varieties and highest weight modules, Proceedings of the Japan Academy. Series A, Volume 89 (2013) no. 10, pp. 144-149 | DOI:10.3792/pjaa.89.144 | Zbl:1290.22007
- Equivariant degenerations of spherical modules for groups of type
, Annales de l'Institut Fourier, Volume 62 (2012) no. 5, pp. 1765-1809 | DOI:10.5802/aif.2735 | Zbl:1267.14018 - On non-Abelian symplectic cutting, Transformation Groups, Volume 17 (2012) no. 4, pp. 1059-1084 | DOI:10.1007/s00031-012-9202-9 | Zbl:1260.53129
- Automorphisms of multiplicity free Hamiltonian manifolds, Journal of the American Mathematical Society, Volume 24 (2011) no. 2, pp. 567-601 | DOI:10.1090/s0894-0347-2010-00686-8 | Zbl:1226.53082
- Moment maps and geometric invariant theory—Corrected version (October 2011), Les cours du CIRM, Volume 1 (2011) no. 1, p. 121 | DOI:10.5802/ccirm.29
- Uniqueness property for spherical homogeneous spaces, Duke Mathematical Journal, Volume 147 (2009) no. 2, pp. 315-343 | DOI:10.1215/00127094-2009-013 | Zbl:1175.14035
Cité par 27 documents. Sources : Crossref, zbMATH