Proof of the Knop conjecture
[Preuve de la conjecture de Knop]
Annales de l'Institut Fourier, Tome 59 (2009) no. 3, pp. 1105-1134.

Dans cet article nous prouvons la conjecture de Knop qui affirme que deux variétés affines sphériques lisses avec le même monoïde des poids sont isomorphes de manière équivariante. On énonce et prouve également une propriété d’unicité pour des variétés affines sphériques non nécessairement lisses.

In this paper we prove the Knop conjecture asserting that two smooth affine spherical varieties with the same weight monoid are equivariantly isomorphic. We also state and prove a uniqueness property for (not necessarily smooth) affine spherical varieties.

DOI : 10.5802/aif.2459
Classification : 14R20, 53D20
Keywords: Spherical varieties, weight monoids, systems of spherical roots, multiplicity free Hamiltonian actions
Mot clés : variété sphérique, monoïde
Losev, Ivan V. 1

1 Massachusetts Institute of Technology Department of Mathematics Room 2-101 77 Massachusetts Avenue Cambridge MA 02139 (USA)
@article{AIF_2009__59_3_1105_0,
     author = {Losev, Ivan V.},
     title = {Proof of the {Knop} conjecture},
     journal = {Annales de l'Institut Fourier},
     pages = {1105--1134},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {3},
     year = {2009},
     doi = {10.5802/aif.2459},
     zbl = {1191.14075},
     mrnumber = {2543664},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2459/}
}
TY  - JOUR
AU  - Losev, Ivan V.
TI  - Proof of the Knop conjecture
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 1105
EP  - 1134
VL  - 59
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2459/
DO  - 10.5802/aif.2459
LA  - en
ID  - AIF_2009__59_3_1105_0
ER  - 
%0 Journal Article
%A Losev, Ivan V.
%T Proof of the Knop conjecture
%J Annales de l'Institut Fourier
%D 2009
%P 1105-1134
%V 59
%N 3
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2459/
%R 10.5802/aif.2459
%G en
%F AIF_2009__59_3_1105_0
Losev, Ivan V. Proof of the Knop conjecture. Annales de l'Institut Fourier, Tome 59 (2009) no. 3, pp. 1105-1134. doi : 10.5802/aif.2459. https://www.numdam.org/articles/10.5802/aif.2459/

[1] Bialynicki-Birula, A. Some properties of the decompositions of algebraic varieties determined by an action of a torus, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., Volume 24 (1976), pp. 667-674 | MR | Zbl

[2] Brion, M. Sur l’image de l’application moment, Lect. Notes Math., 1296, Springer Verlag, 1987 | MR | Zbl

[3] Brion, M.; Luna, D.; Vust, Th. Espaces homogènes sphériques, Invent. Math., Volume 84 (1986), pp. 617-632 | DOI | MR | Zbl

[4] Camus, R. Variétés sphériques affines lisses, Université J. Fourier (2001) (Ph. D. Thesis http://www-fourier.ujf-grenoble.fr/THESE/html/a110)

[5] Delzant, T. Hamiltoniens périodiques et images convexes de l’application moment, Bul. Soc. Math. France, Volume 116 (1988), pp. 315-339 | Numdam | MR | Zbl

[6] Delzant, T. Classification des actions hamiltoniennes complètement intégrables de rang deux, Ann. Global. Anal. Geom., Volume 8 (1990), pp. 87-112 | DOI | MR | Zbl

[7] Grosshans, F. Constructing invariant polynomials via Tschirnhaus transformations, Lect. Notes Math., 1278, Springer Verlag, 1987 | MR | Zbl

[8] Guillemin, V.; Jeffrey, L.; Sjamaar, R. Symplectic implosion, Transform. Groups, Volume 7 (2002), pp. 155-184 | DOI | MR | Zbl

[9] Kirwan, F. Convexity properties of the moment mapping III, Invent. Math., Volume 77 (1984), pp. 547-552 | DOI | MR | Zbl

[10] Knop, F. The Luna-Vust theory of spherical embeddings, Proceedings of the Hydebarad conference on algebraic groups, Manoj Prakashan, Madras (1991), pp. 225-249 | MR | Zbl

[11] Knop, F. The asymptotic behaviour of invariant collective motion, Invent. Math., Volume 114 (1994), pp. 309-328 | DOI | MR | Zbl

[12] Knop, F. Automorphisms, root systems and compactifications, J. Amer. Math. Soc., Volume 9 (1996), pp. 153-174 | DOI | MR | Zbl

[13] Knop, F.; Steirteghem, B. Van Classification of smooth affine spherical varieties, Transform. Groups, Volume 11 (2006), pp. 495-516 | DOI | MR | Zbl

[14] Kramer, M. Spharische Untergruppen in kompakten zusammenhangenden Liegruppen, Compos. Math., Volume 38 (1979), pp. 129-153 | Numdam | MR | Zbl

[15] Leahy, A.S. A classification of multiplicity free representations, J. Lie Theory, Volume 8 (1998), pp. 376-391 | MR | Zbl

[16] Losev, I. Uniqueness properties for spherical homogeneous spaces (to appear in Duke Math. J.)

[17] Luna, D. Grosses cellules pour les variétés sphériques, Austr. Math. Soc. Lect. Ser., 9, Cambridge University Press, 1997 | MR | Zbl

[18] Luna, D. Variétés sphériques de type A, IHES Publ. Math., Volume 94 (2001), pp. 161-226 | DOI | Numdam | MR | Zbl

[19] Onishchik, A.L.; Vinberg, E.B. Lie groups and algebraic groups, Springer Verlag, 1990 | MR | Zbl

[20] Popov, V.L. Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Math. USSR-Izv, Volume 7 (1973), pp. 301-327 | Zbl

[21] Popov, V.L. Contractions of the actions of reductive algebraic groups, Math. USSR Sborhik, Volume 58 (1987), pp. 311-355 | DOI | MR | Zbl

[22] Vust, Th. Plongement d’espaces symétriques algébriques: une classification, Ann. Sc. Norm. Super. Pisa, Ser. IV, Volume 17 (1990), pp. 165-194 | Numdam | MR | Zbl

[23] Wasserman, B. Wonderful varieties of rank 2, Transform. Groups, Volume 1 (1996), pp. 375-403 | DOI | MR | Zbl

[24] Woodward, C. The classification of transversal multiplicity-free Hamiltonian actions, Ann. Global. Anal. Geom., Volume 14 (1996), pp. 3-42 | DOI | MR | Zbl

[25] Woodward, C. Spherical varieties and existence of invariant Kahler structure, Duke Math. J, Volume 93 (1998), pp. 345-377 | DOI | MR | Zbl

  • Ratiu, Tudor S.; Wacheux, Christophe; Zung, Nguyen Tien Convexity of singular affine structures and toric-focus integrable Hamiltonian systems, Memoirs of the American Mathematical Society, 1424, Providence, RI: American Mathematical Society (AMS), 2023 | DOI:10.1090/memo/1424 | Zbl:1526.37002
  • Knop, Friedrich; Paulus, Kay (Quasi-)Hamiltonian manifolds of cohomogeneity one, Mathematische Zeitschrift, Volume 305 (2023) no. 2, p. 27 (Id/No 29) | DOI:10.1007/s00209-023-03325-3 | Zbl:1533.53066
  • Nghiem, Tran-Trung Spherical cones: classification and a volume minimization principle, The Journal of Geometric Analysis, Volume 33 (2023) no. 7, p. 46 (Id/No 221) | DOI:10.1007/s12220-023-01286-x | Zbl:1521.32028
  • Sherman, Alexander Spherical supervarieties, Annales de l'Institut Fourier, Volume 71 (2021) no. 4, pp. 1449-1492 | DOI:10.5802/aif.3421 | Zbl:1492.14092
  • Borovoi, Mikhail; Gagliardi, Giuliano Existence of Equivariant Models of Spherical Varieties and OtherG-varieties, International Mathematics Research Notices, Volume 2022 (2022) no. 20, p. 15932 | DOI:10.1093/imrn/rnab102
  • Arzhantsev, Ivan; Avdeev, Roman Root subgroups on affine spherical varieties, Selecta Mathematica. New Series, Volume 28 (2022) no. 3, p. 37 (Id/No 60) | DOI:10.1007/s00029-022-00775-1 | Zbl:1492.14108
  • Regeta, Andriy; van Santen, Immanuel Characterizing smooth affine spherical varieties via the automorphism group, Journal de l'École Polytechnique – Mathématiques, Volume 8 (2021), pp. 379-414 | DOI:10.5802/jep.149 | Zbl:1473.14114
  • Lane, Jeremy Local normal forms for multiplicity free U(n) actions on coadjoint orbits, Pacific Journal of Mathematics, Volume 309 (2020) no. 2, pp. 401-419 | DOI:10.2140/pjm.2020.309.401 | Zbl:1458.53086
  • Cupit-Foutou, Stéphanie; Pezzini, Guido; Van Steirteghem, Bart Momentum polytopes of projective spherical varieties and related Kähler geometry, Selecta Mathematica. New Series, Volume 26 (2020) no. 2, p. 54 (Id/No 27) | DOI:10.1007/s00029-020-0549-9 | Zbl:1457.14116
  • Pezzini, Guido; van Steirteghem, Bart Combinatorial characterization of the weight monoids of smooth affine spherical varieties, Transactions of the American Mathematical Society, Volume 372 (2019) no. 4, pp. 2875-2919 | DOI:10.1090/tran/7785 | Zbl:1476.14088
  • Paulus, Kay; Pezzini, Guido; Van Steirteghem, Bart On some families of smooth affine spherical varieties of full rank, Acta Mathematica Sinica. English Series, Volume 34 (2018) no. 3, pp. 563-596 | DOI:10.1007/s10114-018-7244-1 | Zbl:1423.14294
  • Avdeev, Roman; Cupit-Foutou, Stéphanie New and old results on spherical varieties via moduli theory, Advances in Mathematics, Volume 328 (2018), pp. 1299-1352 | DOI:10.1016/j.aim.2018.01.027 | Zbl:1423.14290
  • Karshon, Yael; Ziltener, Fabian Hamiltonian group actions on exact symplectic manifolds with proper momentum maps are standard, Transactions of the American Mathematical Society, Volume 370 (2018) no. 2, pp. 1409-1428 | DOI:10.1090/tran/7188 | Zbl:1431.53093
  • Avdeev, Roman; Cupit-Foutou, Stéphanie On the irreducible components of moduli schemes for affine spherical varieties, Transformation Groups, Volume 23 (2018) no. 2, pp. 299-327 | DOI:10.1007/s00031-017-9443-8 | Zbl:1423.14291
  • Papadakis, Stavros Argyrios; Van Steirteghem, Bart Equivariant degenerations of spherical modules. II, Algebras and Representation Theory, Volume 19 (2016) no. 5, pp. 1135-1171 | DOI:10.1007/s10468-016-9614-7 | Zbl:1387.14135
  • Solov’Ev, A. E.; Anikin, I. A.; Pakhol’Chuk, A. P. TREATMENT OF NECROTIC ENTEROCOLITIS IN NEWBORN CHILDREN, Grekov's Bulletin of Surgery, Volume 175 (2016) no. 1, p. 71 | DOI:10.24884/0042-4625-2016-175-1-71-73
  • Bravi, Paolo; Van Steirteghem, Bart The Moduli Scheme of Affine Spherical Varieties with a Free Weight Monoid: Table 1., International Mathematics Research Notices, Volume 2016 (2016) no. 15, p. 4544 | DOI:10.1093/imrn/rnv281
  • Karshon, Yael; Tolman, Susan Classification of Hamiltonian torus actions with two-dimensional quotients, Geometry Topology, Volume 18 (2014) no. 2, pp. 669-716 | DOI:10.2140/gt.2014.18.669 | Zbl:1286.53084
  • Gagliardi, Giuliano The Cox ring of a spherical embedding, Journal of Algebra, Volume 397 (2014), pp. 548-569 | DOI:10.1016/j.jalgebra.2013.08.037 | Zbl:1317.14115
  • Bravi, P.; Pezzini, G. Wonderful subgroups of reductive groups and spherical systems, Journal of Algebra, Volume 409 (2014), pp. 101-147 | DOI:10.1016/j.jalgebra.2014.03.018 | Zbl:1303.14060
  • Perrin, Nicolas On the geometry of spherical varieties, Transformation Groups, Volume 19 (2014) no. 1, pp. 171-223 | DOI:10.1007/s00031-014-9254-0 | Zbl:1309.14001
  • Kitagawa, Masatoshi Stability of branching laws for spherical varieties and highest weight modules, Proceedings of the Japan Academy. Series A, Volume 89 (2013) no. 10, pp. 144-149 | DOI:10.3792/pjaa.89.144 | Zbl:1290.22007
  • Papadakis, Stavros Argyrios; Van Steirteghem, Bart Equivariant degenerations of spherical modules for groups of type A, Annales de l'Institut Fourier, Volume 62 (2012) no. 5, pp. 1765-1809 | DOI:10.5802/aif.2735 | Zbl:1267.14018
  • Martens, Johan; Thaddeus, Michael On non-Abelian symplectic cutting, Transformation Groups, Volume 17 (2012) no. 4, pp. 1059-1084 | DOI:10.1007/s00031-012-9202-9 | Zbl:1260.53129
  • Knop, Friedrich Automorphisms of multiplicity free Hamiltonian manifolds, Journal of the American Mathematical Society, Volume 24 (2011) no. 2, pp. 567-601 | DOI:10.1090/s0894-0347-2010-00686-8 | Zbl:1226.53082
  • Woodward, Chris Moment maps and geometric invariant theory—Corrected version (October 2011), Les cours du CIRM, Volume 1 (2011) no. 1, p. 121 | DOI:10.5802/ccirm.29
  • Losev, Ivan V. Uniqueness property for spherical homogeneous spaces, Duke Mathematical Journal, Volume 147 (2009) no. 2, pp. 315-343 | DOI:10.1215/00127094-2009-013 | Zbl:1175.14035

Cité par 27 documents. Sources : Crossref, zbMATH