We extend the constructions and results of Damian to get topological obstructions to the existence of closed monotone Lagrangian embeddings into the cotangent bundle of a space which is the total space of a fibration over the circle.
On étend des constructions et des résultats obtenus par Damian afin d’obtenir des obstructions topologiques à l’existence de plongements lagrangiens monotones dans le fibré cotangent d’un espace fibré sur le cercle.
Keywords: Lagrangian embeddings, Floer homology, Novikov homology.
Mot clés : plongements lagrangiens, homologie de Floer, homologie de Novikov
@article{AIF_2009__59_3_1135_0, author = {Gadbled, Agn\`es}, title = {Obstructions to the existence of monotone {Lagrangian} embeddings into cotangent bundles of manifolds fibered over the circle}, journal = {Annales de l'Institut Fourier}, pages = {1135--1175}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {3}, year = {2009}, doi = {10.5802/aif.2460}, zbl = {1186.57019}, mrnumber = {2543665}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2460/} }
TY - JOUR AU - Gadbled, Agnès TI - Obstructions to the existence of monotone Lagrangian embeddings into cotangent bundles of manifolds fibered over the circle JO - Annales de l'Institut Fourier PY - 2009 SP - 1135 EP - 1175 VL - 59 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2460/ DO - 10.5802/aif.2460 LA - en ID - AIF_2009__59_3_1135_0 ER -
%0 Journal Article %A Gadbled, Agnès %T Obstructions to the existence of monotone Lagrangian embeddings into cotangent bundles of manifolds fibered over the circle %J Annales de l'Institut Fourier %D 2009 %P 1135-1175 %V 59 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2460/ %R 10.5802/aif.2460 %G en %F AIF_2009__59_3_1135_0
Gadbled, Agnès. Obstructions to the existence of monotone Lagrangian embeddings into cotangent bundles of manifolds fibered over the circle. Annales de l'Institut Fourier, Volume 59 (2009) no. 3, pp. 1135-1175. doi : 10.5802/aif.2460. http://archive.numdam.org/articles/10.5802/aif.2460/
[1] The first steps of symplectic topology, Uspekhi Mat. Nauk, Volume 41 (1986) no. 6 (252), p. 3-18, 229 | MR | Zbl
[2] Fibrés normaux d’immersions en dimension double, points doubles d’immersions lagrangiennes et plongements totalement réels, Comment. Math. Helv., Volume 63 (1988) no. 4, pp. 593-623 | DOI | MR | Zbl
[3] Lagrangian non-intersections, Geom. Funct. Anal., Volume 16 (2006) no. 2, pp. 279-326 | DOI | MR | Zbl
[4] Homology of Lagrangian Submanifolds in Cotangent Bundles (arXiv:math/0312265) | Zbl
[5] Constraints on exact Lagrangians in cotangent bundles of manifolds fibered over the circle (arXiv:0710.0511, to be published in Comment. Math. Helv.)
[6] Morse theory for Lagrangian intersections, J. Differential Geom., Volume 28 (1988) no. 3, pp. 513-547 | MR | Zbl
[7] The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math., Volume 41 (1988) no. 6, pp. 775-813 | DOI | MR | Zbl
[8] Exact Lagrangian submanifolds in simply-connected cotangent bundles, Invent. Math., Volume 172 (2008) no. 1, pp. 1-27 | DOI | MR | Zbl
[9] Lagrangian spheres in , Geom. Funct. Anal., Volume 14 (2004) no. 2, pp. 303-318 | DOI | MR | Zbl
[10] Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents, Comment. Math. Helv., Volume 66 (1991) no. 1, pp. 18-33 | DOI | EuDML | MR | Zbl
[11] Existence de -formes fermées non singulières dans une classe de cohomologie de de Rham, Inst. Hautes Études Sci. Publ. Math. (1994) no. 80, pp. 135-194 | DOI | EuDML | Numdam | MR | Zbl
[12] Symplectic fixed points, the Calabi invariant and Novikov homology, Topology, Volume 34 (1995) no. 1, pp. 155-176 | DOI | MR | Zbl
[13] -formes fermées singulières et groupe fondamental, Invent. Math., Volume 88 (1987) no. 3, pp. 635-667 | DOI | EuDML | MR | Zbl
[14] Microlocal branes are constructible sheaves (arXiv:math/0612399) | Zbl
[15] Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR, Volume 260 (1981) no. 1, pp. 31-35 | MR | Zbl
[16] Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math., Volume 46 (1993) no. 7, pp. 949-993 | DOI | MR | Zbl
[17] Addendum to: Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I., Comm. Pure Appl. Math., Volume 48 (1995) no. 11, pp. 1299-1302 | DOI | MR | Zbl
[18] Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices (1996) no. 7, pp. 305-346 | DOI | MR | Zbl
[19] Surgery on the Novikov complex, -Theory, Volume 10 (1996) no. 4, pp. 323-412 | DOI | MR | Zbl
[20] Monotone Lagrange submanifolds of linear spaces and the Maslov class in cotangent bundles, Math. Z., Volume 207 (1991) no. 2, pp. 217-222 | DOI | EuDML | MR | Zbl
[21] Novikov-symplectic cohomology and exact Lagrangian embeddings (arXiv:0711.1396) | Zbl
[22] Homologie de Novikov associée à une classe de cohomologie réelle de degré , Thèse Orsay (1987) (Ph. D. Thesis) | MR
[23] Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systèmes hamiltoniens, Bull. Soc. Math. France, Volume 115 (1987) no. 3, pp. 361-390 | EuDML | Numdam | MR | Zbl
[24] Functors and computations in Floer homology with applications. I, Geom. Funct. Anal., Volume 9 (1999) no. 5, pp. 985-1033 | DOI | MR | Zbl
Cited by Sources: