[Résolvante à basse énergie et transformée de Riesz pour l’opérateur de Schrödinger sur des variétés asymptotiquement coniques. II]
Soit
Dans le premier article nous avons supposé que
Dans le présent article, on effectue une analyse similaire tout en autorisant les cas où
Let
In our first paper we assumed that
In the present paper, we perform a similar analysis allowing zero modes and zero-resonances. We show once again that (unless
Keywords: Asymptotically conic manifold, scattering metric, resolvent kernel, low energy asymptotics, Riesz transform, zero-resonance
Mot clés : variété asymptotiquement conique, métrique scattering, noyau de la résolvante, asymptotique à basse énergie, transformée de Riesz, zéro-résonance
@article{AIF_2009__59_4_1553_0, author = {Guillarmou, Colin and Hassell, Andrew}, title = {Resolvent at low energy and {Riesz} transform for {Schr\"odinger} operators on asymptotically conic manifolds. {II}}, journal = {Annales de l'Institut Fourier}, pages = {1553--1610}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {4}, year = {2009}, doi = {10.5802/aif.2471}, zbl = {1175.58011}, mrnumber = {2566968}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2471/} }
TY - JOUR AU - Guillarmou, Colin AU - Hassell, Andrew TI - Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II JO - Annales de l'Institut Fourier PY - 2009 SP - 1553 EP - 1610 VL - 59 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2471/ DO - 10.5802/aif.2471 LA - en ID - AIF_2009__59_4_1553_0 ER -
%0 Journal Article %A Guillarmou, Colin %A Hassell, Andrew %T Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II %J Annales de l'Institut Fourier %D 2009 %P 1553-1610 %V 59 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2471/ %R 10.5802/aif.2471 %G en %F AIF_2009__59_4_1553_0
Guillarmou, Colin; Hassell, Andrew. Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II. Annales de l'Institut Fourier, Tome 59 (2009) no. 4, pp. 1553-1610. doi : 10.5802/aif.2471. https://www.numdam.org/articles/10.5802/aif.2471/
[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, Dover Publications, 1964 | MR | Zbl
[2] Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of
[3] A topological criterion for the existence of half-bound states, J. London Math. Soc., Volume 65 (2002), pp. 757-768 | DOI | MR | Zbl
[4] Riesz transform and
[5] Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I., Math. Ann., Volume 341 (2008) no. 4, pp. 859-896 | DOI | MR | Zbl
[6] Spectral properties of Schrödinger operators and time-decay of the wave functions: results in
[7] Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Volume 46 (1979), pp. 583-611 | DOI | MR | Zbl
[8] La transformée de Riesz sur les variétés coniques, J. Funct. Anal., Volume 168 (1999) no. 1, pp. 145-238 | DOI | MR | Zbl
[9] Calculus of conormal distributions on manifolds with corners, Int. Math. Res. Not., Volume 3 (1992), pp. 51-61 | DOI | MR | Zbl
[10] The Atiyah-Patodi-Singer index theorem, AK Peters, Wellesley, 1993 | MR | Zbl
[11] Asymptotic expansions in time for solutions of Schrödinger-Type Equations, Volume 49 (1982), pp. 10-56 | MR | Zbl
[12] Asymptotic expansion in time of the Schrödinger group on conical manifolds, to appear, Annales Inst. Fourier, 2006 | Numdam | MR | Zbl
- Dispersive estimates for Maxwell's equations in the exterior of a sphere, Journal of Differential Equations, Volume 415 (2025), p. 855 | DOI:10.1016/j.jde.2024.10.024
- Littlewood–Paley–Stein functionals: an ℛ-boundedness approach, Annales de l'Institut Fourier, Volume 74 (2024) no. 3, p. 1251 | DOI:10.5802/aif.3634
- Leading-order term expansion for the Teukolsky equation on subextremal Kerr black holes, Séminaire Laurent Schwartz — EDP et applications (2024), p. 1 | DOI:10.5802/slsedp.171
- Analyticity of Quasinormal Modes in the Kerr and Kerr–de Sitter Spacetimes, Communications in Mathematical Physics, Volume 402 (2023) no. 3, p. 2547 | DOI:10.1007/s00220-023-04776-9
- A Cheeger–Müller theorem for manifolds with wedge singularities, Analysis PDE, Volume 15 (2022) no. 3, p. 567 | DOI:10.2140/apde.2022.15.567
- A Sharp Version of Price’s Law for Wave Decay on Asymptotically Flat Spacetimes, Communications in Mathematical Physics, Volume 389 (2022) no. 1, p. 491 | DOI:10.1007/s00220-021-04276-8
- Low Energy Limit for the Resolvent of Some Fibered Boundary Operators, Communications in Mathematical Physics, Volume 390 (2022) no. 1, p. 231 | DOI:10.1007/s00220-021-04273-x
- The Semiclassical Resolvent on Conic Manifolds and Application to Schrödinger Equations, Communications in Mathematical Physics, Volume 390 (2022) no. 2, p. 757 | DOI:10.1007/s00220-021-04308-3
- Long-Time Estimates for Heat Flows on Asymptotically Locally Euclidean Manifolds, International Mathematics Research Notices, Volume 2022 (2022) no. 24, p. 19943 | DOI:10.1093/imrn/rnab350
- Spectral geometry on manifolds with fibered boundary metrics I: Low energy resolvent, Journal de l’École polytechnique — Mathématiques, Volume 9 (2022), p. 959 | DOI:10.5802/jep.198
- Estimates for Operators Related to the Sub-Laplacian with Drift in Heisenberg Groups, Journal of Fourier Analysis and Applications, Volume 28 (2022) no. 1 | DOI:10.1007/s00041-021-09897-0
- The Classical and Quantum Photon Field for Non-compact Manifolds with Boundary and in Possibly Inhomogeneous Media, Communications in Mathematical Physics, Volume 387 (2021) no. 3, p. 1441 | DOI:10.1007/s00220-021-04218-4
- Resolvent near zero energy on Riemannian scattering (asymptotically conic) spaces, a Lagrangian approach, Communications in Partial Differential Equations, Volume 46 (2021) no. 5, p. 823 | DOI:10.1080/03605302.2020.1857401
- Linear stability of slowly rotating Kerr black holes, Inventiones mathematicae, Volume 223 (2021) no. 3, p. 1227 | DOI:10.1007/s00222-020-01002-4
- Geometric and obstacle scattering at low energy, Communications in Partial Differential Equations, Volume 45 (2020) no. 11, p. 1451 | DOI:10.1080/03605302.2020.1774898
- Riesz transforms on a class of non-doubling manifolds, Communications in Partial Differential Equations, Volume 44 (2019) no. 11, p. 1072 | DOI:10.1080/03605302.2019.1611850
- Correction to: Gupta–Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times, Annales Henri Poincaré, Volume 19 (2018) no. 1, p. 323 | DOI:10.1007/s00023-017-0632-8
- The Hardy inequality and the heat equation with magnetic field in any dimension, Communications in Partial Differential Equations, Volume 41 (2016) no. 7, p. 1056 | DOI:10.1080/03605302.2016.1179317
- Effective Limiting Absorption Principles, and Applications, Communications in Mathematical Physics, Volume 333 (2015) no. 1, p. 1 | DOI:10.1007/s00220-014-2177-8
- Sharp Low Frequency Resolvent Estimates on Asymptotically Conical Manifolds, Communications in Mathematical Physics, Volume 335 (2015) no. 2, p. 809 | DOI:10.1007/s00220-014-2286-4
- Low Energy Resolvent for the Hodge Laplacian: Applications to Riesz Transform, Sobolev Estimates, and Analytic Torsion, International Mathematics Research Notices, Volume 2015 (2015) no. 15, p. 6136 | DOI:10.1093/imrn/rnu119
- Conic degeneration and the determinant of the Laplacian, Journal d'Analyse Mathématique, Volume 126 (2015) no. 1, p. 175 | DOI:10.1007/s11854-015-0015-3
- The theory of Hahn-meromorphic functions, a holomorphic Fredholm theorem, and its applications, Analysis PDE, Volume 7 (2014) no. 3, p. 745 | DOI:10.2140/apde.2014.7.745
- The heat kernel on an asymptotically conic manifold, Analysis PDE, Volume 6 (2013) no. 7, p. 1755 | DOI:10.2140/apde.2013.6.1755
- Riesz transforms, fractional power and functional calculus of Schrödinger operators on weightedLp-spaces, Journal of Mathematical Analysis and Applications, Volume 402 (2013) no. 1, p. 220 | DOI:10.1016/j.jmaa.2013.01.024
- Resolvent at low energy III: The spectral measure, Transactions of the American Mathematical Society, Volume 365 (2013) no. 11, p. 6103 | DOI:10.1090/s0002-9947-2013-05849-7
- Riesz Transforms of Schrödinger Operators on Manifolds, Journal of Geometric Analysis, Volume 22 (2012) no. 4, p. 1108 | DOI:10.1007/s12220-011-9231-y
- RACINES CARRÉES D'OPÉRATEURS ELLIPTIQUES ET ESPACES DE HARDY, Confluentes Mathematici, Volume 03 (2011) no. 01, p. 1 | DOI:10.1142/s1793744211000278
- Limiting Absorption Principle for Some Long Range Perturbations of Dirac Systems at Threshold Energies, Communications in Mathematical Physics, Volume 299 (2010) no. 3, p. 677 | DOI:10.1007/s00220-010-1099-3
Cité par 29 documents. Sources : Crossref