Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II
[Résolvante à basse énergie et transformée de Riesz pour l’opérateur de Schrödinger sur des variétés asymptotiquement coniques. II]
Annales de l'Institut Fourier, Tome 59 (2009) no. 4, pp. 1553-1610.

Soit M une variété complète de dimension n3 et g une métrique asymptotiquement conique sur M, au sens où M se compactifie en une variété à bord M telle que g soit une métrique de type “scattering” sur M. On étudie le noyau intégral de la résolvante (P+k2)-1 et la transformée de Riesz T de l’opérateur P=Δg+V, où Δg est le laplacien positif associé à g et V un potentiel réel, lisse sur M et s’annulant au bord.

Dans le premier article nous avons supposé que 0 n’est ni résonance ni valeur propre pour P et montré (i) que le noyau de la résolvante est conormal polyhomogène sur une version éclatée de M2×[0,k0], et (ii) que T est borné sur Lp(M) pour 1<p<n, ce qui optimal sauf si V0 ou bien M a seulement un bout.

Dans le présent article, on effectue une analyse similaire tout en autorisant les cas où 0 est résonance ou valeur propre. On montre là encore (sauf si n=4 et 0 est résonance) que le noyau de la résolvante est polyhomogène sur le même espace, et on donne l’intervalle de p (génériquement n/(n-2)<p<n/3) pour lequel T est borné sur Lp(M) quand 0 est valeur propre.

Let M be a complete noncompact manifold of dimension at least 3 and g an asymptotically conic metric on M, in the sense that M compactifies to a manifold with boundary M so that g becomes a scattering metric on M. We study the resolvent kernel (P+k2)-1 and Riesz transform T of the operator P=Δg+V, where Δg is the positive Laplacian associated to g and V is a real potential function smooth on M and vanishing at the boundary.

In our first paper we assumed that P has neither zero modes nor a zero-resonance and showed (i) that the resolvent kernel is polyhomogeneous conormal on a blown up version of M2×[0,k0], and (ii) T is bounded on Lp(M) for 1<p<n, which range is sharp unless V0 and M has only one end.

In the present paper, we perform a similar analysis allowing zero modes and zero-resonances. We show once again that (unless n=4 and there is a zero-resonance) the resolvent kernel is polyhomogeneous on the same space, and we find the precise range of p (generically n/(n-2)<p<n/3) for which T is bounded on Lp(M) when zero modes are present.

DOI : 10.5802/aif.2471
Classification : 58J50, 42B20, 35J10
Keywords: Asymptotically conic manifold, scattering metric, resolvent kernel, low energy asymptotics, Riesz transform, zero-resonance
Mot clés : variété asymptotiquement conique, métrique scattering, noyau de la résolvante, asymptotique à basse énergie, transformée de Riesz, zéro-résonance
Guillarmou, Colin 1 ; Hassell, Andrew 2

1 Université de Nice Laboratoire J. Dieudonné Parc Valrose 06100 Nice(FRANCE)
2 Australian National University Department of Mathematics Canberra ACT 0200 (AUSTRALIA)
@article{AIF_2009__59_4_1553_0,
     author = {Guillarmou, Colin and Hassell, Andrew},
     title = {Resolvent at low energy and {Riesz} transform for {Schr\"odinger} operators on asymptotically conic manifolds. {II}},
     journal = {Annales de l'Institut Fourier},
     pages = {1553--1610},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {4},
     year = {2009},
     doi = {10.5802/aif.2471},
     zbl = {1175.58011},
     mrnumber = {2566968},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2471/}
}
TY  - JOUR
AU  - Guillarmou, Colin
AU  - Hassell, Andrew
TI  - Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 1553
EP  - 1610
VL  - 59
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2471/
DO  - 10.5802/aif.2471
LA  - en
ID  - AIF_2009__59_4_1553_0
ER  - 
%0 Journal Article
%A Guillarmou, Colin
%A Hassell, Andrew
%T Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II
%J Annales de l'Institut Fourier
%D 2009
%P 1553-1610
%V 59
%N 4
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2471/
%R 10.5802/aif.2471
%G en
%F AIF_2009__59_4_1553_0
Guillarmou, Colin; Hassell, Andrew. Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II. Annales de l'Institut Fourier, Tome 59 (2009) no. 4, pp. 1553-1610. doi : 10.5802/aif.2471. https://www.numdam.org/articles/10.5802/aif.2471/

[1] Abramowitz, M.; Stegun, I. A. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, Dover Publications, 1964 | MR | Zbl

[2] Agmon, S. Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators, Mathematical Notes, 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982 | MR | Zbl

[3] Carron, G. A topological criterion for the existence of half-bound states, J. London Math. Soc., Volume 65 (2002), pp. 757-768 | DOI | MR | Zbl

[4] Carron, G.; Coulhon, T.; Hassell, A. Riesz transform and Lp cohomology for manifolds with Euclidean ends, Duke Math. J., Volume 133 (2006) no. 1, pp. 59-93 | DOI | MR | Zbl

[5] Guillarmou, C.; Hassell, A. Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I., Math. Ann., Volume 341 (2008) no. 4, pp. 859-896 | DOI | MR | Zbl

[6] Jensen, A. Spectral properties of Schrödinger operators and time-decay of the wave functions: results in L2(m),m5, Duke Math. J., Volume 47 (1980), pp. 57-80 | DOI | MR | Zbl

[7] Jensen, A.; Kato, T. Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Volume 46 (1979), pp. 583-611 | DOI | MR | Zbl

[8] Li, H.-Q. La transformée de Riesz sur les variétés coniques, J. Funct. Anal., Volume 168 (1999) no. 1, pp. 145-238 | DOI | MR | Zbl

[9] Melrose, R. B. Calculus of conormal distributions on manifolds with corners, Int. Math. Res. Not., Volume 3 (1992), pp. 51-61 | DOI | MR | Zbl

[10] Melrose, R. B. The Atiyah-Patodi-Singer index theorem, AK Peters, Wellesley, 1993 | MR | Zbl

[11] Murata, M. Asymptotic expansions in time for solutions of Schrödinger-Type Equations, Volume 49 (1982), pp. 10-56 | MR | Zbl

[12] Wang, X-P. Asymptotic expansion in time of the Schrödinger group on conical manifolds, to appear, Annales Inst. Fourier, 2006 | Numdam | MR | Zbl

  • Fang, Yan-long; Waters, Alden Dispersive estimates for Maxwell's equations in the exterior of a sphere, Journal of Differential Equations, Volume 415 (2025), p. 855 | DOI:10.1016/j.jde.2024.10.024
  • Cometx, Thomas; Ouhabaz, El Maati Littlewood–Paley–Stein functionals: an ℛ-boundedness approach, Annales de l'Institut Fourier, Volume 74 (2024) no. 3, p. 1251 | DOI:10.5802/aif.3634
  • Millet, Pascal Leading-order term expansion for the Teukolsky equation on subextremal Kerr black holes, Séminaire Laurent Schwartz — EDP et applications (2024), p. 1 | DOI:10.5802/slsedp.171
  • Petersen, Oliver; Vasy, András Analyticity of Quasinormal Modes in the Kerr and Kerr–de Sitter Spacetimes, Communications in Mathematical Physics, Volume 402 (2023) no. 3, p. 2547 | DOI:10.1007/s00220-023-04776-9
  • Albin, Pierre; Rochon, Frédéric; Sher, David A Cheeger–Müller theorem for manifolds with wedge singularities, Analysis PDE, Volume 15 (2022) no. 3, p. 567 | DOI:10.2140/apde.2022.15.567
  • Hintz, Peter A Sharp Version of Price’s Law for Wave Decay on Asymptotically Flat Spacetimes, Communications in Mathematical Physics, Volume 389 (2022) no. 1, p. 491 | DOI:10.1007/s00220-021-04276-8
  • Kottke, Chris; Rochon, Frédéric Low Energy Limit for the Resolvent of Some Fibered Boundary Operators, Communications in Mathematical Physics, Volume 390 (2022) no. 1, p. 231 | DOI:10.1007/s00220-021-04273-x
  • Chen, Xi The Semiclassical Resolvent on Conic Manifolds and Application to Schrödinger Equations, Communications in Mathematical Physics, Volume 390 (2022) no. 2, p. 757 | DOI:10.1007/s00220-021-04308-3
  • Kröncke, Klaus; Petersen, Oliver L Long-Time Estimates for Heat Flows on Asymptotically Locally Euclidean Manifolds, International Mathematics Research Notices, Volume 2022 (2022) no. 24, p. 19943 | DOI:10.1093/imrn/rnab350
  • Grieser, Daniel; Talebi, Mohammad; Vertman, Boris Spectral geometry on manifolds with fibered boundary metrics I: Low energy resolvent, Journal de l’École polytechnique — Mathématiques, Volume 9 (2022), p. 959 | DOI:10.5802/jep.198
  • Li, Hong-Quan; Sjögren, Peter Estimates for Operators Related to the Sub-Laplacian with Drift in Heisenberg Groups, Journal of Fourier Analysis and Applications, Volume 28 (2022) no. 1 | DOI:10.1007/s00041-021-09897-0
  • Strohmaier, Alexander The Classical and Quantum Photon Field for Non-compact Manifolds with Boundary and in Possibly Inhomogeneous Media, Communications in Mathematical Physics, Volume 387 (2021) no. 3, p. 1441 | DOI:10.1007/s00220-021-04218-4
  • Vasy, András Resolvent near zero energy on Riemannian scattering (asymptotically conic) spaces, a Lagrangian approach, Communications in Partial Differential Equations, Volume 46 (2021) no. 5, p. 823 | DOI:10.1080/03605302.2020.1857401
  • Häfner, Dietrich; Hintz, Peter; Vasy, András Linear stability of slowly rotating Kerr black holes, Inventiones mathematicae, Volume 223 (2021) no. 3, p. 1227 | DOI:10.1007/s00222-020-01002-4
  • Strohmaier, Alexander; Waters, Alden Geometric and obstacle scattering at low energy, Communications in Partial Differential Equations, Volume 45 (2020) no. 11, p. 1451 | DOI:10.1080/03605302.2020.1774898
  • Hassell, Andrew; Sikora, Adam Riesz transforms on a class of non-doubling manifolds, Communications in Partial Differential Equations, Volume 44 (2019) no. 11, p. 1072 | DOI:10.1080/03605302.2019.1611850
  • Finster, Felix; Strohmaier, Alexander Correction to: Gupta–Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times, Annales Henri Poincaré, Volume 19 (2018) no. 1, p. 323 | DOI:10.1007/s00023-017-0632-8
  • Cazacu, Cristian; Krejčiřík, David The Hardy inequality and the heat equation with magnetic field in any dimension, Communications in Partial Differential Equations, Volume 41 (2016) no. 7, p. 1056 | DOI:10.1080/03605302.2016.1179317
  • Rodnianski, Igor; Tao, Terence Effective Limiting Absorption Principles, and Applications, Communications in Mathematical Physics, Volume 333 (2015) no. 1, p. 1 | DOI:10.1007/s00220-014-2177-8
  • Bouclet, Jean-Marc; Royer, Julien Sharp Low Frequency Resolvent Estimates on Asymptotically Conical Manifolds, Communications in Mathematical Physics, Volume 335 (2015) no. 2, p. 809 | DOI:10.1007/s00220-014-2286-4
  • Guillarmou, Colin; Sher, David A. Low Energy Resolvent for the Hodge Laplacian: Applications to Riesz Transform, Sobolev Estimates, and Analytic Torsion, International Mathematics Research Notices, Volume 2015 (2015) no. 15, p. 6136 | DOI:10.1093/imrn/rnu119
  • Sher, David A. Conic degeneration and the determinant of the Laplacian, Journal d'Analyse Mathématique, Volume 126 (2015) no. 1, p. 175 | DOI:10.1007/s11854-015-0015-3
  • Müller, Jörn; Strohmaier, Alexander The theory of Hahn-meromorphic functions, a holomorphic Fredholm theorem, and its applications, Analysis PDE, Volume 7 (2014) no. 3, p. 745 | DOI:10.2140/apde.2014.7.745
  • Sher, David The heat kernel on an asymptotically conic manifold, Analysis PDE, Volume 6 (2013) no. 7, p. 1755 | DOI:10.2140/apde.2013.6.1755
  • Assaad, Joyce Riesz transforms, fractional power and functional calculus of Schrödinger operators on weightedLp-spaces, Journal of Mathematical Analysis and Applications, Volume 402 (2013) no. 1, p. 220 | DOI:10.1016/j.jmaa.2013.01.024
  • Guillarmou, Colin; Hassell, Andrew; Sikora, Adam Resolvent at low energy III: The spectral measure, Transactions of the American Mathematical Society, Volume 365 (2013) no. 11, p. 6103 | DOI:10.1090/s0002-9947-2013-05849-7
  • Assaad, Joyce; Ouhabaz, El Maati Riesz Transforms of Schrödinger Operators on Manifolds, Journal of Geometric Analysis, Volume 22 (2012) no. 4, p. 1108 | DOI:10.1007/s12220-011-9231-y
  • RUSS, EMMANUEL RACINES CARRÉES D'OPÉRATEURS ELLIPTIQUES ET ESPACES DE HARDY, Confluentes Mathematici, Volume 03 (2011) no. 01, p. 1 | DOI:10.1142/s1793744211000278
  • Boussaid, Nabile; Golénia, Sylvain Limiting Absorption Principle for Some Long Range Perturbations of Dirac Systems at Threshold Energies, Communications in Mathematical Physics, Volume 299 (2010) no. 3, p. 677 | DOI:10.1007/s00220-010-1099-3

Cité par 29 documents. Sources : Crossref