[Des groupes de difféomorphismes analytiques réels du cercle qui ont une image finie sous l’application du nombre de rotation]
Nous considérons des groupes de difféomorphismes directs et analytiques réels du cercle qui ont une image finie sous l’application du nombre de rotation. Nous montrons que si un tel groupe est non-discret pour la topologie alors il a une orbite finie. Comme corollaire, nous montrons que si un tel groupe n’a aucune orbite finie alors chacun de ses sous-groupes contient soit un sous-groupe cyclique d’indice fini, soit un sous-groupe libre non-abélien.
We consider groups of orientation-preserving real analytic diffeomorphisms of the circle which have a finite image under the rotation number function. We show that if such a group is nondiscrete with respect to the -topology then it has a finite orbit. As a corollary, we show that if such a group has no finite orbit then each of its subgroups contains either a cyclic subgroup of finite index or a nonabelian free subgroup.
Classification : 37E45, 37E10, 57S05, 37B05, 20F67
Mots clés : nombre de rotation, difféomorphisms du cercle, groupes, champs du vecteur locaux
@article{AIF_2009__59_5_1819_0, author = {Matsuda, Yoshifumi}, title = {Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function}, journal = {Annales de l'Institut Fourier}, pages = {1819--1845}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {5}, year = {2009}, doi = {10.5802/aif.2477}, mrnumber = {2573191}, zbl = {1181.37063}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2477/} }
TY - JOUR AU - Matsuda, Yoshifumi TI - Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function JO - Annales de l'Institut Fourier PY - 2009 DA - 2009/// SP - 1819 EP - 1845 VL - 59 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2477/ UR - https://www.ams.org/mathscinet-getitem?mr=2573191 UR - https://zbmath.org/?q=an%3A1181.37063 UR - https://doi.org/10.5802/aif.2477 DO - 10.5802/aif.2477 LA - en ID - AIF_2009__59_5_1819_0 ER -
Matsuda, Yoshifumi. Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function. Annales de l'Institut Fourier, Tome 59 (2009) no. 5, pp. 1819-1845. doi : 10.5802/aif.2477. http://archive.numdam.org/articles/10.5802/aif.2477/
[1] Complex dynamics, Universitext: Tracts in Mathematics, Springer Verlag, New York, 1993 | MR 1230383 | Zbl 0782.30022
[2] Confoliations, University Lecture Series, 13, Amer. Math. Soc., Providence, RI, 1998 | MR 1483314 | Zbl 0893.53001
[3] Groups acting on the circle, L’Enseignement Mathématique, Volume 47 (2001), pp. 329-407 | MR 1876932 | Zbl 1044.37033
[4] Sur les groups hyperboliques d’après Mikhael Gromov, Progress in Mathematics, 83, Birkhäuser, Boston, 1990 | MR 1086648 | Zbl 0731.20025
[5] Introduction to the Geometry of Foliations, Part A, Aspects of Mathematics, Friedr. Vieweg and Sohn, Braunschweig, 1981 | MR 639738 | Zbl 0486.57002
[6] A note on subgroups of , Quart. J. Math. Oxford Ser. (2), Volume 28 (1977) no. 110, pp. 209-211 | Article | MR 444839 | Zbl 0358.20047
[7] Free subgroups of the homeomorphism group of the circle, C. R. Acad. Sci. Paris Sér. I Math., Volume 9 (2000), pp. 669-674 | Article | MR 1797749 | Zbl 0983.37029
[8] Separatrices for nonsolvable dynamics on , Ann. Inst. Fourier (Grenoble), Volume 44 (1994) no. 2, pp. 569-599 | Article | Numdam | MR 1296744 | Zbl 0804.57022
[9] On uniformly quasisymmetric groups of circle diffeomorphisms, Ann. Acad. Sci. Fenn. Math., Volume 31 (2006), pp. 437-462 | MR 2248825 | Zbl 1098.22011
[10] Ergodicity and rigidity for certain subgroups of , Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 4, pp. 433-453 | Numdam | MR 1693579 | Zbl 0968.37002
[11] On discontinuous groups in higher-dimmensional symmetric spaces, Contributions to function theories (1960), pp. 147-164 | MR 130324 | Zbl 0201.36603
[12] Feuilltages et difféomorphismes infiniment tangents à l’identité, Invent. Math., Volume 39 (1977), pp. 253-275 | Article | MR 474327 | Zbl 0327.58004
[13] Regular iteration of real and complex functions, Acta Math., Volume 100 (1958), pp. 203-258 | Article | MR 107016 | Zbl 0145.07903
Cité par Sources :