Empilements de cercles et modules combinatoires
[Circle packings and combinatorial moduli]
Annales de l'Institut Fourier, Volume 59 (2009) no. 6, pp. 2175-2222.

The aim of this article is to explain the deep relationships between circle-packings and combinatorial moduli of curves, and to compare the approaches to Cannon’s conjecture to which they lead.

Le but de cette note est de tenter d’expliquer les liens étroits qui unissent la théorie des empilements de cercles et des modules combinatoires et de comparer les approches à la conjecture de J.W. Cannon qui en découlent.

DOI: 10.5802/aif.2488
Classification: 52C26, 30C62, 30F10, 30F40
Mot clés : empilement de cercles, quasiconforme, module de courbes
Keywords: Circle packings, quasiconformal, modulus of curves
HaÏssinsky, Peter 1

1 Université de Provence LATP/CMI 39, rue Frédéric Joliot-Curie 13453 Marseille Cedex 13 (France)
@article{AIF_2009__59_6_2175_0,
     author = {Ha\"Issinsky, Peter},
     title = {Empilements de cercles  et modules combinatoires},
     journal = {Annales de l'Institut Fourier},
     pages = {2175--2222},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {6},
     year = {2009},
     doi = {10.5802/aif.2488},
     zbl = {1189.30080},
     mrnumber = {2640918},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/aif.2488/}
}
TY  - JOUR
AU  - HaÏssinsky, Peter
TI  - Empilements de cercles  et modules combinatoires
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 2175
EP  - 2222
VL  - 59
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2488/
DO  - 10.5802/aif.2488
LA  - fr
ID  - AIF_2009__59_6_2175_0
ER  - 
%0 Journal Article
%A HaÏssinsky, Peter
%T Empilements de cercles  et modules combinatoires
%J Annales de l'Institut Fourier
%D 2009
%P 2175-2222
%V 59
%N 6
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2488/
%R 10.5802/aif.2488
%G fr
%F AIF_2009__59_6_2175_0
HaÏssinsky, Peter. Empilements de cercles  et modules combinatoires. Annales de l'Institut Fourier, Volume 59 (2009) no. 6, pp. 2175-2222. doi : 10.5802/aif.2488. http://archive.numdam.org/articles/10.5802/aif.2488/

[1] Ahlfors, Lars V. Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966 | MR | Zbl

[2] Ahlfors, Lars V. Conformal invariants : topics in geometric function theory, McGraw-Hill Book Co., New York, 1973 (McGraw-Hill Series in Higher Mathematics) | MR | Zbl

[3] Bojarski, B. Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987 (Lecture Notes in Math.), Volume 1351, Springer, Berlin, 1988, pp. 52-68 | MR | Zbl

[4] Bonk, Mario; Kleiner, Bruce Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math., Volume 150 (2002) no. 1, pp. 127-183 | DOI | MR | Zbl

[5] Bonk, Mario; Kleiner, Bruce Rigidity for quasi-Möbius group actions, J. Differential Geom., Volume 61 (2002) no. 1, pp. 81-106 | MR | Zbl

[6] Bonk, Mario; Kleiner, Bruce Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Volume 9 (2005), p. 219-246 (electronic) | DOI | MR | Zbl

[7] Cannon, James W. The theory of negatively curved spaces and groups, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) (Oxford Sci. Publ.), Oxford Univ. Press, New York, 1991, pp. 315-369 | MR | Zbl

[8] Cannon, James W. The combinatorial Riemann mapping theorem, Acta Math., Volume 173 (1994) no. 2, pp. 155-234 | DOI | MR | Zbl

[9] Cannon, James W.; Floyd, William J.; Parry, Walter R. Squaring rectangles : the finite Riemann mapping theorem, The mathematical legacy of Wilhelm Magnus : groups, geometry and special functions (Brooklyn, NY, 1992) (Contemp. Math.), Volume 169, Amer. Math. Soc., Providence, RI, 1994, pp. 133-212 | MR | Zbl

[10] Cannon, James W.; Floyd, William J.; Parry, Walter R. Sufficiently rich families of planar rings, Ann. Acad. Sci. Fenn. Math., Volume 24 (1999) no. 2, pp. 265-304 | MR | Zbl

[11] Cannon, James W.; Swenson, Eric L. Recognizing constant curvature discrete groups in dimension 3, Trans. Amer. Math. Soc., Volume 350 (1998) no. 2, pp. 809-849 | DOI | MR | Zbl

[12] Colin de Verdière, Yves Un principe variationnel pour les empilements de cercles, Invent. Math., Volume 104 (1991) no. 3, pp. 655-669 | DOI | MR | Zbl

[13] Gromov, Mikhael Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., Volume 53 (1981), pp. 53-73 | DOI | Numdam | MR | Zbl

[14] Heinonen, Juha Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 | MR | Zbl

[15] Heinonen, Juha; Koskela, Pekka Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998) no. 1, pp. 1-61 | DOI | MR | Zbl

[16] Keith, Stephen Modulus and the Poincaré inequality on metric measure spaces, Math. Z., Volume 245 (2003) no. 2, pp. 255-292 | DOI | MR | Zbl

[17] Keith, Stephen; Laakso, Tomi Conformal Assouad dimension and modulus, Geom. Funct. Anal., Volume 14 (2004) no. 6, pp. 1278-1321 | DOI | MR | Zbl

[18] Koebe, Paul Kontaktprobleme der konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-phys, Volume 88 (1936), pp. 141-164

[19] Nagata, Jun-iti Modern dimension theory, Bibliotheca Mathematica, Vol. VI. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam, Interscience Publishers John Wiley & Sons, Inc., New York, 1965 | MR

[20] Pansu, Pierre Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 14 (1989) no. 2, pp. 177-212 | MR | Zbl

[21] Rodin, Burt; Sullivan, Dennis The convergence of circle packings to the Riemann mapping, J. Differential Geom., Volume 26 (1987) no. 2, pp. 349-360 | MR | Zbl

[22] Schramm, Oded Square tilings with prescribed combinatorics, Israel J. Math., Volume 84 (1993) no. 1-2, pp. 97-118 | DOI | MR | Zbl

[23] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), Volume 6 (1982) no. 3, pp. 357-381 | DOI | MR | Zbl

[24] Tyson, Jeremy Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn., Volume 5 (2001), p. 21-73 (electronic) | DOI | MR | Zbl

[25] Väisälä, Jussi Quasi-Möbius maps, J. Analyse Math., Volume 44 (1984/85), pp. 218-234 | DOI | MR | Zbl

Cited by Sources: