Through the analytic halo: Fission via irregular singularities
[De l’autre côté du halo analytique  : fission via les singularités irrégulières]
Annales de l'Institut Fourier, Tome 59 (2009) no. 7, pp. 2669-2684.

Cet article s’intéresse aux espaces de modules de connexions sur des fibrés sur les surfaces de Riemann, où le groupe de structure du fibré peut varier dans les différentes régions de la surface. Ici, nous allons décrire de tels espaces de modules comme variétés symplectiques complexes, en généralisant les variétés de caractères complexes des surfaces de Riemann.

This article is concerned with moduli spaces of connections on bundles on Riemann surfaces, where the structure group of the bundle may vary in different regions of the surface. Here we will describe such moduli spaces as complex symplectic manifolds, generalising the complex character varieties of Riemann surfaces.

DOI : 10.5802/aif.2503
Classification : 53D30, 34M40
Keywords: Analytic halo, character variety, fission
Mot clés : halo analytique, variété de caractère, fission
Boalch, Philip 1

1 École Normale Supérieure et CNRS 45 rue d’Ulm 75005 Paris (France)
@article{AIF_2009__59_7_2669_0,
     author = {Boalch, Philip},
     title = {Through the analytic halo: {Fission} via irregular singularities},
     journal = {Annales de l'Institut Fourier},
     pages = {2669--2684},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {7},
     year = {2009},
     doi = {10.5802/aif.2503},
     mrnumber = {2649336},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2503/}
}
TY  - JOUR
AU  - Boalch, Philip
TI  - Through the analytic halo: Fission via irregular singularities
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 2669
EP  - 2684
VL  - 59
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2503/
DO  - 10.5802/aif.2503
LA  - en
ID  - AIF_2009__59_7_2669_0
ER  - 
%0 Journal Article
%A Boalch, Philip
%T Through the analytic halo: Fission via irregular singularities
%J Annales de l'Institut Fourier
%D 2009
%P 2669-2684
%V 59
%N 7
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2503/
%R 10.5802/aif.2503
%G en
%F AIF_2009__59_7_2669_0
Boalch, Philip. Through the analytic halo: Fission via irregular singularities. Annales de l'Institut Fourier, Tome 59 (2009) no. 7, pp. 2669-2684. doi : 10.5802/aif.2503. https://www.numdam.org/articles/10.5802/aif.2503/

[1] Alekseev, Anton; Burstzyn, H.; Meinrenken, Eckhard Pure spinors on Lie groups (arXiv:0709.1452)

[2] Alekseev, Anton; Malkin, Anton; Meinrenken, Eckhard Lie group valued moment maps, J. Differential Geom., Volume 48 (1998) no. 3, pp. 445-495 | MR | Zbl

[3] Biquard, Olivier; Boalch, P. P. Wild non-abelian Hodge theory on curves, Compos. Math., Volume 140 (2004) no. 1, pp. 179-204 | DOI | MR | Zbl

[4] Boalch, P. P. Irregular connections and Kac-Moody root systems (arXiv:0806.1050)

[5] Boalch, P. P. Stokes matrices, Poisson Lie groups and Frobenius manifolds, Invent. Math., Volume 146 (2001) no. 3, pp. 479-506 | DOI | MR | Zbl

[6] Boalch, P. P. Symplectic manifolds and isomonodromic deformations, Adv. Math., Volume 163 (2001) no. 2, pp. 137-205 | DOI | MR | Zbl

[7] Boalch, P. P. G-bundles, isomonodromy, and quantum Weyl groups, Int. Math. Res. Not. (2002) no. 22, pp. 1129-1166 (math.DG/0108152) | DOI | MR | Zbl

[8] Boalch, P. P. Quasi-Hamiltonian geometry of meromorphic connections, Duke Math. J., Volume 139 (2007) no. 2, pp. 369-405 (math.DG/0203161) | DOI | MR | Zbl

[9] Deligne, Pierre; Malgrange, Bernard; Ramis, Jean-Pierre Singularités irrégulières, Documents Mathématiques (Paris), 5, Société Mathématique de France, Paris, 2007 (Correspondance et documents) | MR | Zbl

[10] Hitchin, N. J. The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), Volume 55 (1987) no. 1, pp. 59-126 | DOI | MR | Zbl

[11] Martinet, Jean; Ramis, Jean-Pierre Elementary acceleration and multisummability I, Ann. Inst. H. Poincaré Phys. Théor., Volume 54 (1991) no. 4, pp. 331-401 | Numdam | MR | Zbl

[12] Nakajima, Hiraku Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) (Lecture Notes in Pure and Appl. Math.), Volume 179, Dekker, New York, 1996, pp. 199-208 | MR | Zbl

[13] Simpson, Carlos T. Harmonic bundles on noncompact curves, J. Amer. Math. Soc., Volume 3 (1990) no. 3, pp. 713-770 | DOI | MR | Zbl

[14] Simpson, Carlos T. The Hodge filtration on nonabelian cohomology, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, Amer. Math. Soc., Providence, RI, 1997, pp. 217-281 | MR | Zbl

  • Su, Tao Dual boundary complexes of Betti moduli spaces over the two-sphere with one irregular singularity, Advances in Mathematics, Volume 462 (2025), p. 110101 | DOI:10.1016/j.aim.2024.110101
  • Ramis, Jean-Pierre Epilogue: Stokes Phenomena. Dynamics, Classification Problems and Avatars, Handbook of Geometry and Topology of Singularities VI: Foliations (2024), p. 383 | DOI:10.1007/978-3-031-54172-8_10
  • Andersen, Jørgen Ellegaard; Malusà, Alessandro; Rembado, Gabriele Sp(1)-symmetric hyperkähler quantisation, Pacific Journal of Mathematics, Volume 329 (2024) no. 1, p. 1 | DOI:10.2140/pjm.2024.329.1
  • Douçot, Jean; Rembado, Gabriele Topology of Irregular Isomonodromy Times on a Fixed Pointed Curve, Transformation Groups (2023) | DOI:10.1007/s00031-023-09800-9
  • Fairon, Maxime; Fernández, David Euler continuants in noncommutative quasi-Poisson geometry, Forum of Mathematics, Sigma, Volume 10 (2022) | DOI:10.1017/fms.2022.76
  • Boalch, P. Topology of the Stokes phenomenon, Integrability, Quantization, and Geometry, Volume 103.1 (2021), p. 55 | DOI:10.1090/pspum/103.1/01832
  • Xu, Xiaomeng Stokes phenomenon, Gelfand–Zeitlin systems and relative Ginzburg–Weinstein linearization, Advances in Mathematics, Volume 338 (2018), p. 237 | DOI:10.1016/j.aim.2018.09.012
  • Fredrickson, Laura; Pei, Du; Yan, Wenbin; Ye, Ke Argyres-Douglas theories, chiral algebras and wild Hitchin characters, Journal of High Energy Physics, Volume 2018 (2018) no. 1 | DOI:10.1007/jhep01(2018)150
  • Boalch, Philip Global Weyl groups and a new theory of multiplicative quiver varieties, Geometry Topology, Volume 19 (2016) no. 6, p. 3467 | DOI:10.2140/gt.2015.19.3467
  • Li-Bland, David; Ševera, Pavol Symplectic and Poisson Geometry of the Moduli Spaces of Flat Connections Over Quilted Surfaces, Mathematical Aspects of Quantum Field Theories (2015), p. 343 | DOI:10.1007/978-3-319-09949-1_11
  • Boalch, Philip Geometry and braiding of Stokes data; Fission and wild character varieties, Annals of Mathematics, Volume 179 (2014) no. 1, p. 301 | DOI:10.4007/annals.2014.179.1.5
  • Boalch, Philip Poisson varieties from Riemann surfaces, Indagationes Mathematicae, Volume 25 (2014) no. 5, p. 872 | DOI:10.1016/j.indag.2014.07.004
  • Boalch, P. P. Riemann–Hilbert for tame complex parahoric connections, Transformation Groups, Volume 16 (2011) no. 1, p. 27 | DOI:10.1007/s00031-011-9121-1

Cité par 13 documents. Sources : Crossref